Идея Римана о пространстве, не имеющем границ, но не бесконечно протяженном, послужила стимулом к созданию еще одной элементарной неевклидовой геометрии, известной ныне под названием удвоенной эллиптической геометрии
.{52} Сначала и сам Риман и Эудженио Бельтрами (1835-1900) рассматривали новую геометрию как применимую к некоторым поверхностям, например таким, как сфера, на которой роль «прямых» играют дуги больших кругов. Но под влиянием работ Кэли и других авторов математикам пришлось примириться с мыслью, что удвоенная эллиптическая геометрия, как и геометрия Гаусса, Лобачевского и Бойаи, может описывать наше трехмерное физическое пространство, в котором роль прямой играет след, оставленный краем линейки. В удвоенной эллиптической геометрии прямая не ограничена, хотя длина ее не бесконечна. Более того, в удвоенной эллиптической геометрии вообще нет
параллельных. Так как в новой геометрии остается в силе часть аксиом евклидовой геометрии, некоторые ее теоремы сохраняют тот же вид, что и теоремы, известные нам из «Начал» Евклида. Например, теорема о том, что два треугольника конгруэнтны, если две стороны и угол, заключенный между ними, одного треугольника равны двум сторонам и углу, заключенному между ними, другого треугольника, дословно переносится в удвоенную эллиптическую геометрию, как и другие признаки конгруэнтности треугольников. Но основная часть теорем удвоенной эллиптической геометрии отличается как от теорем евклидовой геометрии, так и от теорем геометрии Гаусса — Лобачевского — Бойаи. Так, одна из теорем этой необычной геометрии утверждает, что все прямые имеют одинаковую длину и каждые две из них пересекаются в двух точках. Другая теорема гласит, что все перпендикуляры к данной прямой пересекаются в двух точках. Сумма углов треугольника в удвоенной эллиптической геометрии всегда больше 180°, но она, убывая, стремится к 180°, когда площадь треугольника приближается к нулю. Два подобных треугольника обязательно конгруэнтны. Что же касается применимости удвоенной эллиптической геометрии к физическому миру, то все аргументы относительно применимости ранее созданной неевклидовой геометрии, впоследствии получившей название гиперболической геометрии, равным образом относятся и к ней.{53} На первый взгляд мысль о том, что любая из этих странных геометрий могла бы соперничать с евклидовой геометрией и даже быть более ценной в приложениях к реальной Вселенной, кажется нелепой. Но Гаусс имел смелость рассмотреть и такую возможность. Независимо от того, использовал ли он результаты измерений, приведенные в его работе 1827 г., для проверки применимости неевклидовой геометрии к реальному миру, Гаусс был первым, кто не только с уверенностью заявил, что неевклидова геометрия применима к физическому пространству, но и осознал, что мы более не можем быть уверены в истинности
евклидовой геометрии. Трудно утверждать, находился ли Гаусс под непосредственным влиянием идей Юма. Во всяком случае, предпринятую Кантом попытку опровергнуть Юма Гаусс не считал достаточно серьезной. Не следует забывать, однако, что Гаусс жил во времена, когда истинность математических законов была поставлена под сомнение, и он не мог не ощущать влияния той духовной атмосферы, в которой он жил, как все мы не можем не дышать воздухом, который нас окружает. Новые взгляды, пусть незаметно для него самого, проникали в сознание Гаусса. Если бы Саккери родился на сто лет позже, возможно, и он пришел бы к тем же выводам, что и Гаусс. Насколько можно судить, сначала Гаусс сделал заключение, что во всей математике нет ничего истинного. В письме к Бесселю от 21 ноября 1811 г. он утверждал:
Не следует забывать о том, что эти функции [комплексного переменного], подобно всем математическим конструкциям, являются всего лишь нашими творениями и что в тот момент, когда утрачивает смысл определение, с которого мы начали разработку их теории, следует спрашивать себя, не «что такое эти функции», а какое допущение удобнее принять, чтобы введенное нами понятие функции сохранило смысл.
Но отказаться от сокровищ было не так-то легко. Гаусс, по-видимому, подверг пересмотру проблему истины в математике и счел, что он нашел твердую почву, на которой можно возводить фундамент. В письме Гаусса к Генриху Вильгельму Ольберсу (1758-1840), написанному в 1817 г., говорится: