Читаем Математика. Утрата определенности. полностью

С чисто математической точки зрения содержание работ Гаусса, Лобачевского и Бойаи очень просто. Мы ограничимся здесь рассмотрением варианта неевклидовой геометрии, предложенного Лобачевским, так как все трое сделали по существу одно и то же. Лобачевский смело отверг аксиому Евклида о параллельных и принял допущение, высказанное еще Саккери. Пусть задана прямая AB и точка P вне ее (рис. 4.4). Тогда все прямые, проходящие через точку P, распадаются по отношению к прямой AB на два класса: класс прямых, пересекающих AB, и класс прямых, которые AB не пересекают. К числу последних принадлежат две прямые p и q, разделяющие наши два класса прямых. Сказанному можно придать более точный смысл. Если P — точка, находящаяся от прямой

AB на расстоянии а (а — длина перпендикуляра PD, опущенного из точки P на прямую AB), то существует острый угол α, такой, что все прямые, составляющие с перпендикуляром PD угол, меньший α, пересекаются с прямой AB, а все прямые, составляющие с PD
угол, больший или равный α, не пересекаются с AB. Две прямые p и q, образующие с PD угол α, называются параллельными по Лобачевскому прямой AB, а угол α = (α(a)) называется
углом параллельности (отвечающим отрезку PD = a). Прямые, проходящие через точку P (отличные от параллельных прямых p и q) и не пересекающиеся с прямой AB, называются расходящимися с AB прямыми (или сверхпараллельными ей; в евклидовой геометрии они были бы параллельны прямой AB). Если понимать параллелизм по Евклиду, т.е. называть параллельными любые две прямые, которые лежат в одной плоскости и не пересекаются между собой, то в геометрии Лобачевского через точку P
проходит бесконечно много прямых, параллельных AB.

Рис. 4.4. Угол параллельности.

Затем Лобачевский доказывает несколько ключевых теорем. Если угол α равен π/2, то мы приходим к евклидовой аксиоме о параллельных. Если угол α острый, то при неограниченном росте a он монотонно убывает и стремится к нулю. Сумма углов треугольника всегда меньше 180° и стремится к 180°, когда площадь треугольника неограниченно убывает. Два подобных треугольника, имеющих одинаковые углы, всегда конгруэнтны. 

Ни один обширный раздел математики и даже ни один крупный математический результат никогда не были детищем лишь одного какого-либо человека. В лучшем случае кто-то один делал решающий шаг или высказывал ту или иную важную идею. Также и неевклидова геометрия развивалась совместными усилиями многих известных и неизвестных математиков. Если под неевклидовой геометрией понимать вывод следствий из системы аксиом, содержащей опровержение евклидовой аксиомы о параллельных, то честь ее создания следует приписать Саккери, причем даже он использовал результаты многих своих предшественников, пытавшихся найти подходящую замену аксиоме Евклида. Если под неевклидовой геометрией понимать осознание возможности других геометрий, отличных от евклидовой, то пальму первенства в ее создании следует отдать Клюгелю и Ламберту.{49} Но самое важное утверждение о неевклидовой геометрии состоит в том, что она точно так же, как и евклидова геометрия, позволяет описывать свойства физического пространства. Геометрия физического пространства вовсе не обязательно должна быть евклидовой; более того, тот факт, что в физическом пространстве реализуется именно евклидова геометрия, нельзя гарантировать никакими априорными соображениями.{50} Осознание этого важного факта не требует никаких математических ухищрений, потому что все необходимое уже было сделано раньше, и первым, кто постиг эту истину, был Гаусс.{51}

Перейти на страницу:

Похожие книги