Читаем Математика. Утрата определенности. полностью

Одним из первых алгебраистов, умышленно не переносившим отрицательный коэффициент в другую часть уравнения, был Томас Гарриот (1560-1621). Однако он отвергал отрицательные корни и даже «доказал» в своем сочинении «Практические аналитические искусства» (Artis analyticae praxis, 1631), опубликованном уже после его смерти, что отрицательные корни не существуют. Ясные и четкие определения отрицательных чисел дал Рафаэль Бомбелли (XVI в.), хотя ему и не удалось обосновать правила действий над отрицательными числами, поскольку в то время отсутствовала логическая основа, необходимая для обоснования положительных чисел.{71} Стевин рассматривал уравнения с положительными и отрицательными коэффициентами и считал отрицательные корни вполне допустимыми. В своем сочинении «Новое изобретение в алгебре» (Invention nouvelle en algèbre,

1629) Альбер Жирар (1595-1632) не проводил никакого различия между отрицательными и положительными числами и указывал оба корня квадратного уравнения, даже если они были отрицательными. И Жирар, и Гарриот употребляли один и тот же знак «минус» для обозначения как операции вычитания, так и отрицательных чисел, хотя следовало бы ввести два отдельных символа, поскольку отрицательное число — независимое понятие, в то время как вычитание — одна из четырех арифметических операций.

В целом можно сказать, что немногие математики XVI-XVII вв. свободно обращались с отрицательными числами или легко восприняли их введение, большинство заведомо не признавали отрицательные числа «настоящими» корнями алгебраических уравнений. По поводу отрицательных чисел среди математиков бытовали самые нелепые предрассудки. Так, Валлис, придерживавшийся прогрессивных для своего времени взглядов и не отвергавший отрицательных чисел, был убежден в том, что отрицательные числа больше, чем бесконечность, и в то же время меньше нуля. В своей «Арифметике бесконечно малых» (Arithmetica infinitorum, 1655) Валлис доказывал, что поскольку отношение a/0 при положительном a

обращается в бесконечность, то, когда знаменатель становится отрицательным (отношение a/b с отрицательным b), отношение должно стать больше, чем a/0,
так как отрицательный знаменатель меньше нуля. Следовательно, заключал Валлис, отрицательные числа должны быть больше, чем бесконечность.

Некоторые из наиболее передовых мыслителей того времени — Бомбелли и Стевин — предложили представление чисел, которое, несомненно, способствовало принятию всей системы вещественных чисел. Бомбелли предположил, что существует взаимно-однозначное соответствие между вещественными числами и длинами отрезков, отложенными на прямой (с заданной единицей длины), и ввел для длин четыре основных действия. По мнению Бомбелли, вещественные числа и производимые над ними арифметические действия определяются длинами отрезков и соответствующими геометрическими операциями. Тем самым Бомбелли рационализировал систему вещественных чисел на геометрической основе. Стевин также рассматривал вещественные числа как длины и считал, что при подобной интерпретации исчезают все трудности, связанные с введением иррациональных чисел. Разумеется, при таком подходе вещественные числа оказались тесно связанными с геометрией.

Так и не преодолев трудностей, связанных с иррациональными и отрицательными числами, европейцы еще более увеличили свое, и без того тяжкое, бремя, когда набрели на новое открытие, значение которого они осознали далеко не сразу, — комплексные числа. Новые числа возникли, когда математики распространили операцию извлечения квадратного корня на любые числа, которые только могут встретиться, например при решении квадратных уравнений. Так, Кардано в гл. 37 своего трактата «Великое искусство» (Ars magna, 1545) поставил и решил следующую задачу: разделить число 10 на две части, произведение которых равно 40. Эта на первый взгляд нелепая задача допускает решение, поскольку, как заметил Д'Аламбер, «алгебра щедра: она нередко дает больше, чем от нее можно было бы требовать». Если x

— одна из частей, то по условиям задачи x(10 − x) = 40 и мы получаем для x квадратное уравнение.

Решив его, Кардано нашел корни 5 + √−15 и 5 − √−15, относительно которых заметил, что эти «сложнейшие величины бесполезны, хотя и весьма хитроумны». «Умолчим о нравственных муках» и умножим 5 + √−15 на 5 − √−15. Произведение этих двух чисел равно 25 − (−15) = 40. По этому поводу Кардано философски заметил: «Арифметические соображения становятся все более неуловимыми, достигая предела столь же утонченного, сколь и бесполезного».

Перейти на страницу:

Похожие книги