Читаем Математика. Утрата определенности. полностью

Хотя в XVII в. в логике математики возникли и другие проблемы, мы рассмотрим их в следующей главе, а пока нас будут интересовать те трудности, с которыми столкнулись в XVIII в. математики, пытаясь осмыслить и обосновать все то, что они делали с иррациональными, отрицательными и комплексными числами, а также разобраться в алгебре. Что касается (положительных) иррациональных чисел, то, хотя они по-прежнему не были строго определены и их свойства по существу оставались неустановленными, все же чисто интуитивно такие числа были более приемлемы, поскольку по своим свойствам они в общем были близки к целым и дробным числам. Именно поэтому математики безбоязненно использовали их, не задумываясь ни о том, что собственно они означают, ни об их свойствах. Некоторые математики, в том числе и Эйлер, полагали, что логической основой теории иррациональных чисел служит теория величин Евдокса, изложенная в книге V «Начал» Евклида. Евдокс действительно создал теорию пропорций для величин, связанную с геометрией, но отнюдь не теорию иррациональных чисел.{69} Однако, что касалось иррациональных чисел, то здесь если не логика, то по крайней мере совесть ученых мужей XVII в. была чиста.

Отрицательные числа беспокоили математиков гораздо сильнее, чем иррациональные; возможно, это объяснялось тем, что отрицательные числа не имели столь очевидного геометрического смысла и правила операций над ними выглядели менее привычно. Хотя примерно с середины XVII в. отрицательные числа использовались весьма широко, они были лишены строгого определения и логического обоснования, и многие математики либо пытались каким-то образом восполнить этот пробел, либо оспаривали само применение отрицательных чисел. В статье «Отрицательное», написанной для знаменитой французской «Энциклопедии», один из величайших мыслителей Века разума Жан Лерон Д'Аламбер утверждал: «Если задача приводит к отрицательному решению, то это означает, что какая-то часть исходных предположений ложна, хотя мы и считали ее истинной», — и далее: «Если получено отрицательное решение, то это означает, что искомым решением служит дополнение к [соответствующему положительному] числу».{73}

Работа величайшего из математиков XVIII в. Леонарда Эйлера «Полное введение в алгебру» (1770) по праву принадлежит к числу самых значительных трудов по алгебре. В этой работе Эйлер обосновал эквивалентность операций вычитания величины −b

и прибавления величины b, сославшись на то, что «погасить долг означает поднести дар». Равенство (−1)
(−1) = +1 Эйлер доказал следующим образом. Произведение (−1)
(−1), рассуждал он, может быть равно либо −1, либо +1, а поскольку ему удалось доказать, что 1(−1) = −1, то для произведения (−1)(−1) остается единственное возможное значение, а именно +1. В XVIII в. авторы даже наиболее выдающихся работ по алгебре не различали знак «минус» как символ операции вычитания и знак «минус» как символ отрицательного числа (например, −2).

На протяжении XVIII в. против отрицательных чисел выдвигалось немало возражений. Английский математик, член совета Кларе-колледжа в Кембридже и член Королевского общества, Фрэнсис Мазер (1731-1824) был автором солидных работ по математике и фундаментального трактата по страхованию жизни. В 1759 г. он опубликовал «Рассуждение о применении в алгебре знака минус». Мазер показал, как избежать отрицательных чисел (исключение составляли лишь числа, получаемые в том случае, когда из меньшего числа необходимо вычесть большее), и в частности отрицательных корней уравнения. Он произвел тщательную классификацию квадратных уравнений: уравнения с отрицательными корнями Мазер рассматривал отдельно, а сами отрицательные корни рекомендовал отбрасывать. Аналогичным образом он поступал и с кубическими уравнениями. Об отрицательных корнях Мазер говорил:

Перейти на страницу:

Похожие книги