Читаем Математика. Утрата определенности. полностью

Основное достоинство предложенных Виетом буквенных обозначений для классов чисел состояло в том, что, доказав правильность метода решения уравнения ax2 + bx + c = 0, математики могли с полным основанием применять тот же метод к решению бесконечно большого числа конкретных уравнений, например уравнения 3x2 + 7x + 5 = 0. Можно сказать, что основной вклад Виета в развитие алгебры состоит в придании общности алгебраическим доказательствам. Но чтобы производить какие-то операции над a, b и

c, где a, b и c — любые вещественные или комплексные числа, необходимо быть уверенным в применимости этих операций ко всем вещественным и комплексным числам. А поскольку не только операции не были логически обоснованы, но даже определения различных типов чисел были достаточно расплывчаты, обоснование операций, производимых над буквами a, b
и c в общем виде, заведомо были недостижимой целью. Сам Виет отвергал отрицательные и комплексные числа; поэтому общность, которой он достиг в logistica speciosa, была довольно ограниченной.

Ход мысли Виета непостижим, если даже не иррационален. С одной стороны, Виет внес весьма существенный вклад, введя буквенные коэффициенты, и полностью сознавал важность этого шага, открывшего возможность получать общие доказательства. Вместе с тем Виет не признавал отрицательных чисел и отказывался придавать отрицательные значения буквенным коэффициентам — поистине и лучшие умы человечества могут страдать ограниченностью! Между тем правила действий над отрицательными числами существовали уже порядка 800 лет и всегда приводили к правильным результатам. Виет не мог игнорировать эти правила, которыми исчерпывалось почти все, чем располагала в его время алгебра. Но отрицательным числам недоставало наглядности и физического смысла, которыми обладали положительные числа. Лишь в 1657 г. Иоганн Худде (1633-1704) расширил область допустимых значений буквенных коэффициентов так, что она стала охватывать как отрицательные, так и положительные числа. Впоследствии его примеру последовало большинство математиков.

Во времена Виета (в конце XVI в.) алгебра была лишь скромным придатком геометрии. Алгебраисты занимались решением либо одного уравнения с одним неизвестным, либо решением двух уравнений с двумя неизвестными — задачи такого рода возникали в связи с практическими проблемами геометрии или торговли. Могущество алгебры оставалось скрытым вплоть до XVII в. Решающий шаг был сделан Рене Декартом и Пьером де Ферма, создавшими аналитическую геометрию (которую следовало бы называть алгебраической геометрией, если бы ныне этот термин не приобрел совсем другого смысла{75}). Основная идея новой науки состояла в том, что если на плоскости задать систему координат, то каждой кривой можно сопоставить ее уравнение. Например, уравнение х2 + y2 = 25 соответствует окружности радиуса 5 с центром в начале координат. Использование уравнений позволяет доказывать всевозможные свойства кривой гораздо проще, чем чисто геометрические (или синтетические) методы античных математиков.

Но в 1637 г., когда Декарт опубликовал свою «Геометрию», ни он сам, ни Ферма в работе 1629 г. (опубликованной посмертно) не были подготовлены к тому, чтобы принять отрицательные числа. Им обоим была ясна идея алгебраического подхода к геометрии, но ни тот, ни другой еще не представляли, сколь широки возможности такого подхода. Отрицательные числа были введены в аналитическую геометрию потомками Декарта и Ферма, и она стала играть весьма важную роль в главных событиях, происходивших в математическом анализе и в геометрии.

Представление функций алгебраическими формулами было вторым новшеством, выдвинувшим алгебру на первый план. Как известно (гл. II), идею описания движений с помощью формул выдвинул Галилей. Так, тело, брошенное вверх со скоростью 30 м/с, через t с будет находиться над поверхностью Земли на высоте h, определяемой формулой h = 30t − 4,9t2 м. Из этой формулы с помощью чисто алгебраических средств можно извлечь неисчерпаемое количество сведений о движении: например, установить максимальную высоту подъема; время, необходимое для подъема на максимальную высоту; время, необходимое для падения с максимальной высоты на землю. Вскоре математики сознали могущество алгебры, которая заняла господствующее положение в математике, оттеснив геометрию на второй план.

Перейти на страницу:

Похожие книги