Читаем Математика. Утрата определенности. полностью

Хотя приведенный нами отрывок не отличается особой ясностью, это наиболее ясное из всех утверждений Ньютона о флюксиях. Именно здесь Ньютон употребил ключевое слово «пределы» (его терминология была иной), хотя и не стал углубляться в анализ этого понятия.

Ньютон, несомненно, сознавал неудовлетворительность предложенного им объяснения флюксии и, должно быть, с отчаяния обратился к ее физическому смыслу. Вот что говорится об этом в «Началах».

Делают возражение, что для исчезающих количеств не существует «предельного отношения», ибо то отношение, которое они имеют ранее исчезания, не есть предельное, после же исчезания нет никакого отношения. Но при таком и столь же натянутом рассуждении окажется, что у тела, достигающего какого-либо места, где движение прекращается, не может быть «предельной» скорости, ибо та скорость, которую тело имеет ранее, нежели оно достигло этого места, не есть «предельная», когда же достигло, то нет скорости. Ответ простой: под «предельною» скоростью надо разуметь ту, с которою тело движется не перед тем, как достигнуть крайнего места, где движение прекращается, и не после того, а когда достигает, т.е. именно ту скорость, обладая которой тело достигает крайнего места и при которой движение прекращается. Подобно этому, под предельным отношением исчезающих количеств должно быть разумеемо отношение количеств не перед тем, как они исчезают, и не после того, но при котором исчезают.

([20], с. 69.)

Поскольку результаты его математических исследований были физически вполне осмысленными, Ньютон не уделял особого внимания логическому обоснованию математического анализа. В «Началах» он пользовался геометрическими методами и приводил теоремы о пределах в их геометрической формулировке. Позднее Ньютон признал, что при выводе теорем в «Началах» он прибегал к математическому анализу, он формулировал их геометрически, чтобы придать своим рассуждениям ту степень достоверности, которой отличались доказательства древних. Разумеется, его геометрические доказательства отнюдь не были строгими. Ньютон слепо верил в непогрешимость евклидовой геометрии, но ничто не свидетельствовало о том, что евклидова геометрия могла хоть в какой-то мере помочь в обосновании математического анализа.

Несколько иной подход к математическому анализу предложил Лейбниц (см. [141]). По его мнению, величины, обозначенные нами h и

k (Лейбниц обозначал их символами dx и dy), убывая, достигают «исчезающе малых», или «бесконечно малых», значений. На этой стадии h и k отличны от нуля, но меньше любого заданного числа. Следовательно, любыми степенями h, например h2
или h3, заведомо можно пренебречь. Получающееся при этом отношение h/k и есть та самая величина, которую требовалось найти, т.е. производная, которую Лейбниц обозначил dy/dx.

Геометрический смысл величин h и k по Лейбницу заключался в следующем. Пусть P и

Q — «бесконечно близкие» точки на кривой. Тогда dx — разность их абсцисс, a dy — разность их ординат (рис. 6.4). Кроме того, касательная к кривой в точке T совпадает с дугой PQ. Следовательно, отношение dy/dx задает угол наклона касательной. Треугольник PQR,
называемый характеристическим, не являлся изобретением Лейбница: им пользовались Паскаль и Барроу, труды которых были известны Лейбницу. Лейбниц считал, что треугольник PQR подобен треугольнику STU, — и пользовался этим подобием для доказательства некоторых утверждений относительно dy/dx.



Рис. 6.4. Характеристический треугольник PQR.

Перейти на страницу:

Похожие книги