Читаем Математики, шпионы и хакеры полностью

НЕМНОГО ЛИНЕЙНОЙ АЛГЕБРЫ

Матрица может быть определена как таблица, представляющая собой совокупность строк и столбцов. Например, матрица 2x2 имеет вид:



а матрица 2x1 записывается как:



Произведение этих двух матриц дает нам новую матрицу 2x1, называемую вектор-столбцом:



В случае матрицы 2x2 число (аd

Ьс) называется определителем матрицы.

* * *

Ограничение на значение определителя установлено для того, чтобы обратная матрица работала как инструмент расшифровки. Как правило, для алфавита из n символов необходимо, чтобы НОД определителя матрицы и числа n равнялся единице. Иначе нельзя гарантировать существование обратного элемента в модульной арифметике.

Продолжая пример, возьмем алфавит из 26 букв с символом пробела, который мы обозначим как @. Каждой букве мы поставим в соответствие число, как показано в следующей таблице:



Для получения значений от 0 до 26 мы будем работать по модулю 27.

Процесс шифрования и расшифровки текста происходит следующим образом: сначала мы определяем шифровальную матрицу с определителем 1.

Например,

Матрицей для расшифровки будет обратная матрица

Таким образом, А будет ключом шифра, А-1 — ключом для расшифровки.

Например, зашифруем сообщение BOY («мальчик»). Буквы сообщения группируются в пары: ВО У@. Их численными эквивалентами, согласно таблице, являются пары чисел (1, 14) и (24, 26). Умножим матрицу А на каждую пару чисел.

Зашифрованное

что, согласно таблице, соответствует буквам (Q, Т).

Зашифрованное

что соответствует буквам (V, О).

Сообщение BOY будет зашифровано как QTVO.

Обратная операция расшифровки выполняется при помощи матрицы:


Возьмем пару букв (Q, Т) и найдем их числовые эквиваленты из таблицы: (16, 19). Затем умножим их на A-1

и получим:


то же со второй парой (V, О) и ее численными значениями (21, 14) и получаем:


Таким образом, мы доказали, что расшифровка работает.

В этом примере мы рассматривали пары символов. Для большей безопасности можно группировать буквы по три или даже по четыре. Тогда расчеты будут проводиться с матрицами порядка 3 х 3 и 4 х 4 соответственно, что было бы чрезвычайно трудоемким процессом для вычислений вручную. Современные компьютеры позволяют работать с огромными матрицами и с обратными к ним.

У шифра Хилла есть существенный недостаток: имея даже небольшой фрагмент исходного текста, можно расшифровать все сообщение. Поиск идеального шифра был еще далек от завершения.

Глава 4. Процесс общения посредством нулей и единиц

Изобретение компьютера Colossus и расшифровка кода «Энигмы» открыли путь к величайшей революции в сфере коммуникаций. Этот гигантский шаг вперед произошел в значительной степени благодаря развитию систем шифрования, что обеспечило безопасную, эффективную и быструю связь по разветвленным сетям, представляющим собой компьютеры и их пользователей — то есть нас с вами. Когда сегодня мы употребляем слово «безопасность», мы имеем в виду не только криптографию и секретность. Это слово имеет более широкий смысл, который включает в себя понятия надежности и эффективности.

Двоичная система является основой технологической революции. Этот суперпростой код, содержащий лишь два символа, 0 и 1, используется в цифровых устройствах из-за его способности представлять состояние электронных схем: единица означает, что в контуре есть ток, ноль — тока нет. Одна двоичная цифра — 0 или 1 — называется битом.


ASCII-код


Одним из многих приложений двоичной системы является особый набор символов, состоящий из восьми битов и называемый байтом. Каждый байт обозначает букву, цифру или другой символ. Именно байты лежат в основе обычных коммуникаций.

Они называются ASCII-кодами (аббревиатура ASCII переводится как «американская стандартная кодировочная таблица»). Количество размещений (с повторениями) из двух цифр (0 и 1) по 8 (длина символа) составляет 28 = 256.

ASCII-коды позволяют пользователям вводить текст в компьютер. Когда мы печатаем букву или цифру, компьютер превращает этот символ в байт — строку из восьми битов. Так, например, если мы печатаем букву А, компьютер превращает ее в 0100 0001.

* * *

БАЙТЫ ПАМЯТИ

Емкость памяти компьютера измеряется в единицах, кратных байтам.

Килобайт (КБ): 1024 байтов

Мегабайт (МБ): 1 048 576 байтов

Гигабайт (ГБ): 1 073 741 824 байтов

Терабайт (ТБ): 1099 511627 776 байтов

* * *

Перейти на страницу:

Все книги серии Мир математики

Математики, шпионы и хакеры
Математики, шпионы и хакеры

Если бы историю человечества можно было представить в виде шпионского романа, то главными героями этого произведения, несомненно, стали бы криптографы и криптоаналитики. Первые — специалисты, виртуозно владеющие искусством кодирования сообщений. Вторые — гении взлома и дешифровки, на компьютерном сленге именуемые хакерами. История соперничества криптографов и криптоаналитиков стара как мир.Эволюционируя вместе с развитием высоких технологий, ремесло шифрования достигло в XXI веке самой дальней границы современной науки — квантовой механики. И хотя объектом кодирования обычно является текст, инструментом работы кодировщиков была и остается математика.Эта книга — попытка рассказать читателю историю шифрования через призму развития математической мысли.

Жуан Гомес

Математика / Образование и наука
Когда прямые искривляются
Когда прямые искривляются

Многие из нас слышали о том, что современная наука уже довольно давно поставила под сомнение основные постулаты евклидовой геометрии. Но какие именно теории пришли на смену классической доктрине? На ум приходит разве что популярная теория относительности Эйнштейна. На самом деле таких революционных идей и гипотез гораздо больше. Пространство Минковского, гиперболическая геометрия Лобачевского и Бойяи, эллиптическая геометрия Римана и другие любопытные способы описания окружающего нас мира относятся к группе так называемых неевклидовых геометрий. Каким образом пересекаются параллельные прямые? В каком случае сумма внутренних углов треугольника может составить больше 180°? Ответы на эти и многие другие вопросы вы найдете в данной книге.

Жуан Гомес

Математика / Образование и наука

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное
Значимые фигуры. Жизнь и открытия великих математиков
Значимые фигуры. Жизнь и открытия великих математиков

Несмотря на загадочное происхождение отдельных своих элементов, математика не рождается в вакууме: ее создают люди. Некоторые из этих людей демонстрируют поразительную оригинальность и ясность ума. Именно им мы обязаны великими прорывными открытиями, именно их называем пионерами, первопроходцами, значимыми фигурами математики. Иэн Стюарт описывает открытия и раскрывает перед нами судьбы 25 величайших математиков в истории – от Архимеда до Уильяма Тёрстона. Каждый из этих потрясающих людей из разных уголков мира внес решающий вклад в развитие своей области математики. Эти живые рассказы, увлекательные каждый в отдельности, складываются в захватывающую историю развития математики.

Иэн Стюарт , Йэн Стюарт

Биографии и Мемуары / Математика / Образование и наука