Читаем Математики, шпионы и хакеры полностью

Двоичные ASCII-коды приведены для всех используемых в обычном обиходе символов: 26 заглавных букв, 26 строчных букв, 10 цифр, 7 символов пунктуации и некоторых специальных символов. Все они показаны в следующей таблице.

Для двоичного кода каждого символа указано соответствующее десятичное число (в столбце «Дес»):




Фразу «GOTO 2» (команду на языке программирования «Бейсик») компьютер переведет в следующую последовательность двоичных кодов:



Компьютер, таким образом, будет выполнять следующую команду:

010001110100111101010100010011110010000000110010


Шестнадцатеричная система счисления


Шестнадцатеричная система — еще один известный код, используемый в вычислениях. Это система счисления, которая использует 16 уникальных «цифр» (отсюда и название — шестнадцатеричная), в отличие от обычной системы с десятью цифрами (десятичной). Можно сказать, что шестнадцатеричная система является вторым языком компьютеров после двоичной системы. Почему 16 цифр? Напомним, что байт, основная единица хранения информации на компьютере, состоит из восьми битов, которые дают 28 = 256 различных комбинаций из 0 и 1. А 28 = 24 х 24 = 16 х 16. Иными словами, один байт — это комбинация двух шестнадцатеричных чисел.

Шестнадцать «цифр» шестнадцатеричной системы — это традиционные цифры 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 и еще шесть символов, выбранных по соглашению: А, В, С, D, Е, F. Числа в шестнадцатеричной системе записываются следующим образом:

От 0 до 15: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, А, В, С, D, Е, F.

От 16 до 31: 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 1А, 1В, 1C, ID, IE, 1F.

От 32 и дальше: 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 2А, 2В, 2С…



Эти файлы были созданы компьютером автоматически. Их странные имена — на самом деле шестнадцатеричные числа.


Шестнадцатеричные цифры не различают регистр букв (1Е означает то же самое, что и 1е). В следующей таблице приведены первые 16 двоичных чисел и их шестнадцатеричные эквиваленты:



Чтобы перейти от двоичной записи к шестнадцатеричной, мы сгруппируем биты в четыре группы по четыре цифры, начиная с правого конца, а потом преобразуем каждую четверку цифр в соответствии с предыдущей таблицей. Если количество двоичных цифр не кратно четырем, мы дописываем слева нули. Чтобы перейти от шестнадцатеричной записи к двоичной, мы преобразуем каждую шестнадцатеричную цифру в ее двоичный эквивалент, как показано в следующем примере.

Шестнадцатеричное число принято обозначать так: 9F216 (с нижним индексом 16). Напомним соответствующие двоичные коды:



9F216 = 1001111100102 (здесь нижний индекс 2 указывает, что число выражено в двоичной системе).

Давайте теперь осуществим обратный процесс: число 11101001102 состоит из десяти цифр. Мы дополняем его двумя нулями слева, чтобы получить 12 цифр, которые можно сгруппировать по четыре.

Преобразуем:

11101001102 = 0011 1010 0Н02 = 3А6

16.

Какая связь между шестнадцатеричными символами и ASCII-кодами? Каждый ASCII-код содержит восемь битов (один байт) информации, поэтому пять ASCII-символов содержат 40 битов (пять байтов), и так как шестнадцатеричный символ содержит четыре бита, мы заключаем, что пять ASCII-символов — это десять шестнадцатеричных символов.

Рассмотрим пример кодирования фразы в шестнадцатеричном коде. Например, возьмем название NotRealCo Ltd. Выполним следующие действия. 1 2 31. Переведем NotRealCo Ltd в двоичные коды в соответствии с таблицей ASCII.

2. Сгруппируем цифры по четыре. (Если длина двоичной строки не кратна четырем, мы добавим нули слева.)

3. Выполним замену по таблице соответствий двоичных и шестнадцатеричных символов.




Фраза NotRealCo Ltd в шестнадцатеричных символах выглядит так:

4Е 6F 74 72 65 61 6С 63 6F 20 48 74 64.


Системы счисления и переход к другому основанию


Если система счисления имеет n цифр, то число n называется основанием системы.

На руках человека десять пальцев, поэтому, вероятно, и была придумана десятичная система счисления — счет проводился на пальцах. Десятичное число, например, 7392, представляет собой количество, равное семи тысячам трем сотням девяти десяткам и двум единицам. Тысячи, сотни, десятки и единицы являются степенями основания системы счисления, в данном случае 10. Число 7392, таким образом, может быть выражено следующим образом:

7392 = 7∙103 + 3∙102 + 9∙10 + 2∙100.

Однако по соглашению принято писать только коэффициенты (в нашем примере это 7, 3, 9 и 2). Кроме десятичной системы существует много других систем счисления (на самом деле их общее число бесконечно). В этой главе мы уделили особое внимание двум из них: двоичной системе с основанием 2 и шестнадцатеричной с основанием 16. В двоичной системе счисления коэффициенты имеют только два возможных значения: 0 и 1. Разряды двоичных чисел представляют собой степени двойки. Таким образом, число 110112 может быть записано как

110112 = 1∙24 + 1∙23 + 0∙22 + 1∙21 + 1∙20.

Перейти на страницу:

Все книги серии Мир математики

Математики, шпионы и хакеры
Математики, шпионы и хакеры

Если бы историю человечества можно было представить в виде шпионского романа, то главными героями этого произведения, несомненно, стали бы криптографы и криптоаналитики. Первые — специалисты, виртуозно владеющие искусством кодирования сообщений. Вторые — гении взлома и дешифровки, на компьютерном сленге именуемые хакерами. История соперничества криптографов и криптоаналитиков стара как мир.Эволюционируя вместе с развитием высоких технологий, ремесло шифрования достигло в XXI веке самой дальней границы современной науки — квантовой механики. И хотя объектом кодирования обычно является текст, инструментом работы кодировщиков была и остается математика.Эта книга — попытка рассказать читателю историю шифрования через призму развития математической мысли.

Жуан Гомес

Математика / Образование и наука
Когда прямые искривляются
Когда прямые искривляются

Многие из нас слышали о том, что современная наука уже довольно давно поставила под сомнение основные постулаты евклидовой геометрии. Но какие именно теории пришли на смену классической доктрине? На ум приходит разве что популярная теория относительности Эйнштейна. На самом деле таких революционных идей и гипотез гораздо больше. Пространство Минковского, гиперболическая геометрия Лобачевского и Бойяи, эллиптическая геометрия Римана и другие любопытные способы описания окружающего нас мира относятся к группе так называемых неевклидовых геометрий. Каким образом пересекаются параллельные прямые? В каком случае сумма внутренних углов треугольника может составить больше 180°? Ответы на эти и многие другие вопросы вы найдете в данной книге.

Жуан Гомес

Математика / Образование и наука

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное
Значимые фигуры. Жизнь и открытия великих математиков
Значимые фигуры. Жизнь и открытия великих математиков

Несмотря на загадочное происхождение отдельных своих элементов, математика не рождается в вакууме: ее создают люди. Некоторые из этих людей демонстрируют поразительную оригинальность и ясность ума. Именно им мы обязаны великими прорывными открытиями, именно их называем пионерами, первопроходцами, значимыми фигурами математики. Иэн Стюарт описывает открытия и раскрывает перед нами судьбы 25 величайших математиков в истории – от Архимеда до Уильяма Тёрстона. Каждый из этих потрясающих людей из разных уголков мира внес решающий вклад в развитие своей области математики. Эти живые рассказы, увлекательные каждый в отдельности, складываются в захватывающую историю развития математики.

Иэн Стюарт , Йэн Стюарт

Биографии и Мемуары / Математика / Образование и наука