Кроме обсуждаемой, рассматриваются также различные иные варианты транспортной задачи. Например, если доставка производится вагонами, то объемы поставок должны быть кратны вместимости вагона.
Количество переменных и ограничений в транспортной задаче таково, что для ее решения не обойтись без компьютера и соответствующего программного продукта.
Линейное программирование имеет дело с числовыми переменными. Если вспомнить общую постановку оптимизационной задачи, приведенную в начале главы, то
3.2.2. Целочисленное программирование
Задачи оптимизации, в которых переменные принимают целочисленные значения, относятся к целочисленному программированию. Рассмотрим несколько таких задач.
Задача о выборе оборудования.
На приобретение оборудования для нового участка цеха выделено 20000 долларов США. При этом можно занять площадь не более 38 м 2. Имеется возможность приобрести станки типа А и станки типа Б. При этом станки типа А стоят 5000 долларов США, занимают площадь 8 м 2 (включая необходимые технологические проходы) и имеют производительность 7 тыс. единиц продукции за смену. Станки типа Б стоят 2000 долларов США, занимают площадь 4 м 2 и имеют производительность 3 тыс. единиц продукции за смену. Необходимо рассчитать оптимальный вариант приобретения оборудования, обеспечивающий при заданных ограничениях максимум общей производительности участка.Пусть
При этом должны быть выполнены следующие ограничения:
по стоимости (в тыс. долларов США)
5
по занимаемой площади (в м 2)
8
а также вновь появляющиеся специфические ограничения по целочисленности, а именно,
Сформулированная математическая задача отличается от задачи линейного программирования только последним условием целочисленности. Однако наличие этого условия позволяет (в данном конкретном случае) легко решить задачу перебором. Действительно, как ограничение по стоимости, так и ограничение по площади дают, что
Если
Если
Если
Если
Если
Все возможные случаи рассмотрены. Максимальная производительность
Задача о ранце
. Общий вес ранца заранее ограничен. Какие предметы положить в ранец, чтобы общая полезность отобранных предметов была максимальна? Вес каждого предмета известен.Есть много эквивалентных формулировок. Например, можно вместо ранца рассматривать космический аппарат – спутник Земли, а в качестве предметов – научные приборы. Тогда задача интерпретируется как отбор приборов для запуска на орбиту. Правда, при этом предполагается решенной предварительная задача – оценка сравнительной ценности исследований, для которых нужны те или иные приборы.
С точки зрения экономики предприятия и организации производства более актуальна другая интерпретация задачи о ранце, в которой в качестве «предметов» рассматриваются заказы (или варианты выпуска партий тех или иных товаров), в качестве полезности – прибыль от выполнения того или иного заказа, а в качестве веса – себестоимость заказа.
Перейдем к математической постановке. Предполагается, что имеется n предметов, и для каждого из них необходимо решить, класть его в ранец или не класть. Для описания решения вводятся булевы переменные