Индекс Шоррокса принимает значения от нуля до единицы, где
Значения М для перемещений между тремя состояниями
Как следует из табл. П4-5, максимальной межстатусной мобильностью отличаются представители самой младшей из рассматриваемых групп, причем с возрастом мобильность ожидаемо снижается. Самые низкие показатели – у лиц со средним образованием. Мобильность женщин и мужчин различается слабо. При этом динамика показателя по годам трудно поддается интерпретации, поскольку выглядит как совокупность случайных колебаний. Единственное, что можно отметить с определенной уверенностью, – это постепенное снижение мобильности в младшей возрастной группе и тенденцию к конвергенции индексов для разных групп. В принципе, это согласуется с «успокоением» рынка труда в целом, индикатором чего является и тенденция снижения безработицы. Если в Европе максимальная мобильность наблюдается в группе лиц с высшим образованием [Ward-Warmedinger, Mac-chiarelli, 2013], то в России – в группе со средним. По-видимому, лица с высшим образованием «мобильны» внутри занятости, а «границы» состояний чаще пересекают обладатели среднего образования.
Межстрановые сопоставления позволяют делать выводы о том, являются ли полученные значения высокими или низкими. Здесь мы ориентируемся на оценки по странам Европейского союза за период 1998–2008 гг., приведенные в работе [Ward-Warmedinger, Mac-chiarelli, 2013] и полученные по сопоставимой методологии. В обоих случаях (Россия и страны ЕС) показатели рассчитываются на основе матрицы переходов размерностью 3*3 и периоды, за которые оценивается мобильность, почти совпадают.
Российские значения индекса Шоррокса оказываются устойчиво выше, чем в европейских странах, и эти различия существенны. Например, среднее значение индекса для России за период 2000–2012 гг. равно 0,555 против 0,295 для стран ЦВЕ, входящих в ЕС, 0,272 для стран еврозоны, и оно максимально для Дании – 0,449 и Швеции – 0,44. В целом же Дания оказывается самой «мобильной» страной, Швеция идет вслед, а население стран Восточной Европы наименее склонно к мобильности такого рода.
4.6. Драйверы потоков
Матрицы мобильности и построенные на их основе индексы дают усредненное представление об интенсивности и направлении перемещений и не учитывают неоднородность индивидов. Например, в одну сторону могут двигаться более молодые и образованные, а в другую – пожилые и менее образованные. Поэтому закономерен вопрос: как влияют характеристики респондентов на выбор ими соответствующего статуса на рынке труда при условии равенства всех остальных характеристик? Ответ на него мы ищем с помощью динамической мультиномиальной логит-модели (Д-МНЛ) выбора статуса на рынке труда.
Модель выглядит следующим образом:
Наша зависимая переменная принимает три значения, соответствующие состояниям занятости, безработицы и неактивности {j =
Коэффициенты при лагированных переменных для статусов характеризуют зависимость от предыдущих состояний[66]
. Поскольку коэффициенты Д-МНЛ-регрессии неудобны для интерпретации, далее мы симулируем условные вероятности выбора статуса для индивидов по всем выделенным группам. Для этого мы фиксируем определенные значения лагированнных статусов для всех индивидов и, используя полученные коэффициенты, рассчитываем вероятность каждого состояния в настоящем периоде для «усредненного» индивида, зафиксировав для него все прочие характеристики на уровне средних значений по выборке.