Читаем Начало бесконечности. Объяснения, которые меняют мир полностью

Все неразрешимые высказывания прямо или косвенно относятся к бесконечным множествам. Противники бесконечности в математике объясняют это тем, что такие высказывания бессмысленны. Но для меня это мощный аргумент в пользу объективного существования абстракций, наряду с аргументом Хофштадтера о числе 641. Ведь это говорит о том, что истинностное значение неразрешимого высказывания, безусловно, не является просто удобным способом описания поведения некоторого физического объекта, например, компьютера или набора домино.

Интересно, что лишь об очень немногих вопросах известно, что они неразрешимы, хотя на самом деле таковыми является большинство, и к этому я еще вернусь. Но существует много недоказанных математических предположений, и некоторые из них вполне могут оказаться неразрешимыми. Возьмем, например, вопрос о простых числах-близнецах. Простые числа-близнецы – это пара простых чисел, отличающихся на 2, например, 5 и 7. Гипотеза состоит в том, что наибольшей такой пары не существует: их бесконечно много. Предположим в целях текущих рассуждений, что в рамках нашей

физики эта гипотеза неразрешима, но разрешима согласно многим другим законам физики. Примером могут служить законы отеля «Бесконечность». То, как конкретно администраторы отеля будут решать вопрос о простых числах-близнецах, для моего повествования неважно, но я опишу этот процесс ради читателей с математическим мышлением. Объявление будет следующим:

Первое. На протяжении следующей минуты, пожалуйста, проверьте, являются ли число на двери вашего номера и число на два больше простыми.

Далее. Если являются, то сообщите через предыдущие по порядку номера, что вы нашли простые числа-близнецы. Для быстрой отправки сообщений воспользуйтесь обычным методом (одна минута на первый шаг, а затем на каждый шаг отводится в два раза меньше времени, чем на предыдущий). Сохраните сообщение в комнате с наименьшим номером из тех, в которых еще нет такой записи.

Далее. Сверьтесь с номером, следующим по порядку за вашим. Если у этого постояльца нет такой записи, а у вас есть, то сообщите в номер 1, что наибольшая пара простых чисел-близнецов существует.

Через пять минут администраторы будут знать, верна ли гипотеза о простых числах-близнецах.

Так что с математической точки зрения в неразрешимых вопросах, невычислимых функциях, недоказуемых теоремах нет ничего особенного. Они различаются только с точки зрения физики. Из разных физических законов будут вытекать разные бесконечные и разные вычислимые понятия, и разные истины, как математические, так и научные, окажутся при них познаваемыми. Лишь законы физики определяют, какие абстрактные сущности и отношения моделируются с помощью физических объектов, вроде мозга математика, компьютеров и листов бумаги.

Когда Гильберт сформулировал свои проблемы, некоторые математики задумывались над тем, существенна ли для доказательства конечность (с математической точки зрения). Ведь, в конце концов, математически бесконечность имеет смысл, так почему бы не быть бесконечным доказательствам? Гильберт, хотя и яро выступал в защиту теории Кантора, считал эту идею смехотворной. И таким образом и он, и его критики ошибались, как ошибался Зенон: все они предполагали, что некоторый класс абстрактных сущностей может что-то доказывать

и что с помощью математических рассуждений можно определить, что это за класс.

Но если бы законы физики на самом деле были не такими, какими мы их сейчас считаем, то это могло бы сказаться и на множестве математических истин, которые мы тогда смогли бы доказать, и на операциях, доступных для использования в доказательстве. Законы физики в том виде, в котором они нам известны, придают особый статус таким операциям, как не, и и или, проводимым над отдельными битами информации (двоичными знаками или логическими значениями истина

/ложь). Поэтому эти операции кажутся нам естественными, элементарными и конечными, так же, как и биты. При таких законах физики, как, скажем, в отеле «Бесконечность», существовали бы дополнительные привилегированные операции, действующие над бесконечными множествами битов. При каких-нибудь еще законах физики операции не, и и или были бы невычислимы, а некоторые из наших невычислимых функций казались бы естественными, элементарными и конечными.

Перейти на страницу:

Похожие книги

Русская литература Урала. Проблемы геопоэтики
Русская литература Урала. Проблемы геопоэтики

Учебное пособие предназначено для студентов, обучающихся по направлению «Филология» и изучающих проблемы региональной уральской литературы и культуры в рамках учебной дисциплины «Региональная литература и культура» общепрофессионального цикла. В учебном пособии литература рассматривается в ее взаимодействии с географическим пространством. Соответственно рассматриваются история формирования и механизмы локальных текстов – уральского и пермского, изучается роль геопоэтических образов в становлении территориальной идентичности, проблемы прагматики литературного текста. В пособии анализируется проза Д.Н. Мамина-Сибиряка, А.В. Иванова, путевые заметки П.И. Мельникова-Печерского, П.А. Небольсина и А.И. Герцена, творчество современных пермских поэтов. Учебное пособие подготовлено в рамках гранта РГНФ № 12-14-59006. «Идеология и символика региональной идентичности в художественном творчестве и гуманитарной практике Алексея Иванова».

Владимир Васильевич Абашев

Культурология / Учебники и пособия для среднего и специального образования / Педагогика / Языкознание / Образование и наука