Читаем Начало бесконечности. Объяснения, которые меняют мир полностью

Как следствие, достоверность наших знаний о математике всегда будет проистекать из достоверности знаний о физической действительности. Корректность любого математического доказательства полностью зависит от правильности наших представлений относительно законов, определяющих поведение некоторых физических объектов, таких как компьютеры, чернила и бумага или мозг. Таким образом, в противовес тому, что считал Гильберт, и тому, во что со времен античности верили и верят до сих пор почти все математики, теория доказательств никогда не станет направлением математики. Теория доказательств – это естественная наука, а конкретно информатика[49].

Вся мотивация поисков идеально надежного фундамента для математики была ошибочной. Это был своего рода джастификационизм. Математику характеризуется тем, как в ней используются доказательства, равно как естественная наука – тем, как в ней используется экспериментальная проверка; но в обоих случаях ни то, ни другое не является целью исследования. Цель математики – понять, то есть объяснить, абстрактные сущности. Доказательство – это главным образом средство для исключения ложных объяснений, а иногда оно также обнаруживает математические истины, требующие объяснения. Но, как и все области, в которых возможен прогресс, математика ищет не случайные истины, а разумные объяснения.

Итак, вот три тесно связанных между собой подхода, в рамках которых законы физики кажутся тонко настроенными: все они могут быть выражены через единый, конечный набор элементарных операций; они единым образом проводят различие между конечными и бесконечными операциями; все их предсказания могут быть вычислены одним физическим объектом, а именно универсальным классическим компьютером (хотя для эффективного

моделирования физических процессов, вообще говоря, требуется квантовый компьютер). А все потому, что законы физики поддерживают вычислительную универсальность, заключающуюся в том, что человеческий мозг может предсказывать и объяснять поведение очень далеких от человека объектов, вроде квазаров. И та же самая универсальность позволяет таким математикам, как Гильберт, выстраивать интуитивную основу доказательства и ошибочно полагать, что оно не зависит от физики. Но этой независимости нет: это скорее универсальность в рамках той физики, которая управляет нашим миром. Если бы физика квазаров была похожа на физику отеля «Бесконечность» и зависела от функций, которые мы называем невычислимыми, то мы не смогли бы что-либо предсказать о них (если бы только не смогли построить компьютеры из квазаров или других объектов, опирающихся на соответствующие законы физики). При немного более экзотических, чем эти, законах физики мы бы не смогли ничего объяснить, а значит, не могли бы существовать.

Таким образом, нечто особенное – похоже, бесконечно особенное – содержится в законах физики, какими мы их находим, делающее их исключительно благоприятными для вычислений, предсказаний и объяснений. Физик Юджин Вигнер[50]

называл это «непостижимой эффективностью математики в естественных науках». По приведенным мною причинам этого не объяснить одними только антропными рассуждениями. Нужно что-то еще.

Эта проблема, похоже, просто притягивает к себе неразумные объяснения. Так же, как религиозные люди считают, как правило, что непостижимая эффективность математики в науке – заслуга Провидения, некоторые эволюционисты усматривают в ней знак эволюции, а некоторые космологи – результат антропного отбора, а некоторые ученые, занимающиеся информатикой, и программисты видят в небе огромный компьютер. Например, одна из версий этой идеи состоит в том, что все, обычно воспринимаемое нами как действительность, – это просто виртуальная реальность: программа, запущенная на гигантском компьютере, «Великом симуляторе». На первый взгляд кажется, что это перспективный подход к объяснению связей между физикой и вычислениями: возможно, причина выразимости законов физики в компьютерных программах состоит в том, что они и есть компьютерные программы. Быть может, существование вычислительной универсальности в нашем мире – это частный случай способности компьютеров (в данном случае «Великого симулятора») эмулировать другие компьютеры и так далее.

Но такое объяснение – это химера. Это бесконечный регресс. Ведь оно ведет к отказу от объяснений в науке. В самой природе вычислительной универсальности заложено, что, если мы и наш мир состояли бы из программного обеспечения, у нас не было бы возможности понять настоящую физику – физику, на основе которой построен «Великий симулятор».

Перейти на страницу:

Похожие книги

Русская литература Урала. Проблемы геопоэтики
Русская литература Урала. Проблемы геопоэтики

Учебное пособие предназначено для студентов, обучающихся по направлению «Филология» и изучающих проблемы региональной уральской литературы и культуры в рамках учебной дисциплины «Региональная литература и культура» общепрофессионального цикла. В учебном пособии литература рассматривается в ее взаимодействии с географическим пространством. Соответственно рассматриваются история формирования и механизмы локальных текстов – уральского и пермского, изучается роль геопоэтических образов в становлении территориальной идентичности, проблемы прагматики литературного текста. В пособии анализируется проза Д.Н. Мамина-Сибиряка, А.В. Иванова, путевые заметки П.И. Мельникова-Печерского, П.А. Небольсина и А.И. Герцена, творчество современных пермских поэтов. Учебное пособие подготовлено в рамках гранта РГНФ № 12-14-59006. «Идеология и символика региональной идентичности в художественном творчестве и гуманитарной практике Алексея Иванова».

Владимир Васильевич Абашев

Культурология / Учебники и пособия для среднего и специального образования / Педагогика / Языкознание / Образование и наука