Читаем Начало бесконечности. Объяснения, которые меняют мир полностью

Другой способ поставить вычисления в центр физики и справиться с неоднозначностями антропных рассуждений – это представить, что все возможные компьютерные программы уже запущены. То, что мы воспринимаем как реальность, на самом деле виртуальная реальность, созданная одной или несколькими такими программами. Затем мы определим понятия «обычный» и «необычный» в терминах среднего по всем этим программам, считая их в порядке их длины (количества элементарных операций в каждой из них). Но здесь снова подразумевается, что есть предпочтительное представление о том, что такое «элементарная операция». Поскольку длина и сложность программы полностью зависят от законов физики, эта теория снова требует внешнего мира, в котором работают эти компьютеры, – мира, который был бы для нас непостижимым.

Оба эти подхода терпят неудачу, потому что они пытаются обратить направление реальной объяснительной связи между физикой и вычислениями. Они кажутся возможными лишь потому, что опираются на стандартную ошибку Зенона, но применительно к вычислениям: заблуждение о том, что множество классически вычислимых функций имеет в математике априорно привилегированный статус. Но это не так. Единственное, что как-то выделяет данное множество операций, – это то, что они воплощаются законами физики. Вся суть универсальности теряется, если представить, что вычисления каким-то образом предшествовали физическому миру и создавали его законы. Вычислительная универсальность относится только к компьютерам внутри

нашего физического мира, которые связаны друг с другом по универсальным законам физики, к которым мы (таким образом) имеем доступ.


Но как все эти сильные ограничения на то, что мы можем знать и что может быть достигнуто с помощью математики и вычислений, включая существование в математике неразрешимых вопросов, уживаются с принципом, гласящим, что проблемы можно решить

?

Проблемы – это конфликты идей. Большая часть математических вопросов, которые существуют абстрактно, никогда появляются в качестве предмета такого конфликта: они никогда не бывают предметом любопытства или центром конфликтующих заблуждений о какой-либо черте мира абстракций. Одним словом, большинство их них просто неинтересны.

Кроме того, напомню, что поиск доказательств не есть цель математики, это просто один из ее методов. Цель ее в том, чтобы понять, а общий метод, как и во всех областях, – составлять гипотезы и критиковать их, исходя из того, насколько разумны они в качестве объяснений. Нельзя понять математическое утверждение, просто доказав, что оно истинно. Вот почему существуют лекции по математике, а не просто списки доказательств. И наоборот, отсутствие доказательства не обязательно означает, что утверждение нельзя понять. Напротив, обычно математик сначала

понимает что-то в рассматриваемой абстракции, затем на основе этого понимания выдвигает предположение, как можно было бы доказать истинные утверждения о ней, и лишь потом
их доказывает.

Можно доказать математическую теорему, но она так и не вызовет ни у кого интереса. А недоказанная математическая гипотеза может оказаться весьма плодоносной, порождая множество объяснений, даже если она столетиями будет оставаться недоказанной или даже если ее вообще нельзя доказать. Примером такой гипотезы может служить проблема, известная в информатике как «P /= NP». Грубо говоря, она заключается в том, что существуют классы математических вопросов, ответы на которые, будь они откуда-то получены, можно эффективно проверить с помощью универсального (классического) компьютера, но нельзя эффективным образом вычислить. (У «эффективных» вычислений есть техническое определение, которое примерно соответствует тому, что мы имеем в виду под этой фразой на практике.) Практически все исследователи, работающие в области вычислительной теории, убеждены в том, что это предположение верно (что еще раз опровергает идею о том, что математические знания состоят только из доказательств). Хотя его доказательство и неизвестно, существуют достаточно разумные объяснения того, почему следует ожидать, что это утверждение истинно, а объяснений в пользу противоположного исхода нет. (И поэтому считается, что то же самое верно и для квантовых компьютеров.)

Более того, на этой гипотезе строится огромное количество математических знаний одновременно и полезных, и интересных. Сюда входят теоремы вида «если гипотеза верна, то из нее следует вот такой интересный факт». Теорем о том, что было бы, будь гипотеза неверна, меньше, но они тоже представляют интерес.

Перейти на страницу:

Похожие книги

Русская литература Урала. Проблемы геопоэтики
Русская литература Урала. Проблемы геопоэтики

Учебное пособие предназначено для студентов, обучающихся по направлению «Филология» и изучающих проблемы региональной уральской литературы и культуры в рамках учебной дисциплины «Региональная литература и культура» общепрофессионального цикла. В учебном пособии литература рассматривается в ее взаимодействии с географическим пространством. Соответственно рассматриваются история формирования и механизмы локальных текстов – уральского и пермского, изучается роль геопоэтических образов в становлении территориальной идентичности, проблемы прагматики литературного текста. В пособии анализируется проза Д.Н. Мамина-Сибиряка, А.В. Иванова, путевые заметки П.И. Мельникова-Печерского, П.А. Небольсина и А.И. Герцена, творчество современных пермских поэтов. Учебное пособие подготовлено в рамках гранта РГНФ № 12-14-59006. «Идеология и символика региональной идентичности в художественном творчестве и гуманитарной практике Алексея Иванова».

Владимир Васильевич Абашев

Культурология / Учебники и пособия для среднего и специального образования / Педагогика / Языкознание / Образование и наука