Читаем Нейротон. Занимательные истории о нервном импульсе полностью

а – величина набухания клеточной мембраны, (0,5 нм, можно полагать, что a <

d – диаметр нервного волокна – (100—1000 мкм для немиелинизированного и 1—20 мкм для миелинизированного волокна).

Под действием растягивающей (или сжимающей) силы изменяются не только продольные, но и поперечные размеры мембраны. Если сила растягивающая, то поперечные размеры – уменьшаются. Для учёта этого фактора вводится коэффициент Пуассона. Он зависит только от материала рассматриваемого тела. Модуль Юнга и коэффициент Пуассона полностью характеризуют упругие свойства изотропного материала.

В отличие от формулы Моенса-Кортевега здесь не учитывается толщина мембраны, она примерно одинакова для всех клеток. И второе – исправлена зависимость от диаметра волокна на обратную.

Формула 2.1 прекрасно подходит ля описания немиелинизированного нервного волокна.


Доказано. Проводимость нервов новорождённого ребёнка ниже, чем у взрослого в два раза и скорость проведения возбуждения составляет около 50% от таковой у взрослых. Проведение возбуждения по нервным волокнам «плохо изолировано».

В процессе взросления организма нервные волокна миелинизируются. Это приводит к тому, что скорость распространения потенциала действия растёт. У детей она возрастает до показателей взрослого человека к 5—9 годам для разных типов нервных тканей.


Миелинизацию можно рассматривать как «армирование» нервного волокна, которое приводит к увеличению модуля упругости мембраны – Е и, следовательно, к увеличению скорости нервного импульса.

Попробуем учесть этот фактор путём введения специального коэффициента. В простейшем случае можно использовать в качестве такового отношение длины участка, покрытого миелином – L, и длины перехвата Ранвье – l.

,(2.3)

L – по данным разных источников расстояние между перехватами Ранвье 0,2 – 2,5 мм.

– длина перехвата Ранвье 1—2 мкм.

В большинстве случаев, для миелинизированного волокна этот коэффициент близок к 1.

Но главное – требуется подстановка другого значения модуля Юнга (большего на значение этого показателя для миелина, покрывающего клетку) – Em.

В результате конечная формула для определения скорости нервного импульса будет выглядеть так:


Расчёты показали удовлетворительное соответствие с экспериментальными данными для: 1) немиелинизированных нейронов и 2) миелинизированных нейронов с малыми диаметрами. А вот для миелинизированных волокон большого диаметра выявились значительные отклонения от экспериментальных (в сторону уменьшения скорости).

И это не удивительно, полученная формула применима для линейных процессов. В случае же рассмотрения процесса как солитона или ударной волны следовало бы учесть нелинейную зависимость её скорости от длительности и амплитуды (вспомним пример цунами).

Примечание. Почему не учитывается соотношение миелинизированных и немиелинизированных участков аксона сторонниками сальтаторного проведения? Вероятно, потому, что пришлось бы объяснить: почему скорость возрастает примерно на один порядок, а не на четыре. Ведь отношение длин шванновской клетки и перехвата Ранвье составляет примерно 20 000.

PS. Ложка дёгтя. Через модуль Юнга вычисляют скорость звука в веществах по формуле:


Получается я всего лишь определил скорость звука в мембране с поправками, коэффициентами и эмпирически увязанный с диаметром аксона?

Да, но формула (2.5) используется и для определения скорости ударной волны при условии, что модуль упругости стенки трубы стремится к бесконечности. А в нашем случае обязательно нужно учесть упругое расширение стенки мембраны!

Такая формула существует и успешно применяется в гидродинамике для исследования ударных волн:


Ес – модуль упругости сомы,

d – диаметр аксона,

Еm – модуль упругости мембраны,

h – толщина мембраны.

Что ж, значит уравнение скорости нервного импульса продолжает оставаться тайной. И возможно ещё ждёт своего нобелевского лауреата.

Зачем нужна формула скорости нервного импульса? Разве недостаточно экспериментальных измерений? На мой взгляд важна не сама формула, а объяснение физического смысла процесса и его математического описания. А в формуле его, увы, нет. И если принять за основу правильность всего математического аппарата созданного наукой, то приходится сомневаться в правильности современной трактовки физических процессов при распространении нервного импульса.

Перейти на страницу:

Похожие книги

Происхождение мозга
Происхождение мозга

Описаны принципы строения и физиологии мозга животных. На основе морфофункционального анализа реконструированы основные этапы эволюции нервной системы. Сформулированы причины, механизмы и условия появления нервных клеток, простых нервных сетей и нервных систем беспозвоночных. Представлена эволюционная теория переходных сред как основа для разработки нейробиологических моделей происхождения хордовых, первичноводных позвоночных, амфибий, рептилий, птиц и млекопитающих. Изложены причины возникновения нервных систем различных архетипов и их роль в определении стратегий поведения животных. Приведены примеры использования нейробиологических законов для реконструкции путей эволюции позвоночных и беспозвоночных животных, а также основные принципы адаптивной эволюции нервной системы и поведения.Монография предназначена для зоологов, психологов, студентов биологических специальностей и всех, кто интересуется проблемами эволюции нервной системы и поведения животных.

Сергей Вячеславович Савельев , Сергей Савельев

Биология, биофизика, биохимия / Зоология / Биология / Образование и наука
Энергия, секс, самоубийство. Митохондрии и смысл жизни
Энергия, секс, самоубийство. Митохондрии и смысл жизни

Испокон веков люди обращали взоры к звездам и размышляли, почему мы здесь и одни ли мы во Вселенной. Нам свойственно задумываться о том, почему существуют растения и животные, откуда мы пришли, кто были наши предки и что ждет нас впереди. Пусть ответ на главный вопрос жизни, Вселенной и вообще всего не 42, как утверждал когда-то Дуглас Адамс, но он не менее краток и загадочен — митохондрии.Они показывают нам, как возникла жизнь на нашей планете. Они объясняют, почему бактерии так долго царили на ней и почему эволюция, скорее всего, не поднялась выше уровня бактериальной слизи нигде во Вселенной. Они позволяют понять, как возникли первые сложные клетки и как земная жизнь взошла по лестнице восходящей сложности к вершинам славы. Они показывают нам, почему возникли теплокровные существа, стряхнувшие оковы окружающей среды; почему существуют мужчины и женщины, почему мы влюбляемся и заводим детей. Они говорят нам, почему наши дни в этом мире сочтены, почему мы стареем и умираем. Они могут подсказать нам лучший способ провести закатные годы жизни, избежав старости как обузы и проклятия. Может быть, митохондрии и не объясняют смысл жизни, но, по крайней мере, показывают, что она собой представляет. А разве можно понять смысл жизни, не зная, как она устроена?16+

Ник Лэйн

Биология, биофизика, биохимия / Биология / Образование и наука
Будущее мозга. Как мы изменимся в ближайшие несколько лет
Будущее мозга. Как мы изменимся в ближайшие несколько лет

Мы разговариваем друг с другом в любой точке мира, строим марсоходы и примеряем виртуальную одежду. Сегодня технологии настолько невероятны, что уже не удивляют. Но неужели это все, на что способно человечество?Книга всемирно известного нейробиолога Факундо Манеса и профессора социолингвистики Матео Ниро раскроет настоящие и будущие возможности нашего мозга. Авторы расскажут о том, что человек смог достичь в нейронауке и зачем это нужно обществу.Вы узнаете, как современные технологии влияют на наш ум и с помощью чего можно будет победить тяжелые заболевания мозга. Какие существуют невероятные нейротехнологии и почему искусственному интеллекту еще далеко до превосходства над человеком. Ученые помогут понять, как именно работает наш мозг, и чего еще мы не знаем о себе.

Матео Ниро , Факундо Манес

Биология, биофизика, биохимия / Научно-популярная литература / Образование и наука