Читаем Нейротон. Занимательные истории о нервном импульсе полностью

Ныне считается, что большинство синапсов, в том числе те, что исследовались в разгар этого спора, имеют химическую природу. Но некоторые нейроны образуют с другими электрические синапсы. В таких синапсах между двумя клетками появляются небольшие мостики, позволяющие электрическому току проходить из одной клетки в другую – примерно так, как некогда предсказывал Гольджи [8].

Таким образом, как это иногда бывает с научными спорами, обе стороны оказались в чём-то правы.

Так или иначе, химический аспект оказался гораздо более сложным. В мозге обнаружены сотни видов нейронов, электрические импульсы в их передаются практически одинаково. Но при этом для взаимодействия между ними в синапсах задействованы сотни разных нейротрансмиттеров, передающих различные нюансы.

Нейротрансмиттеры воздействуют на электрическую возбудимость нейрона всего двумя способами: возбудить или ингибировать. Каждую секунду нейрон получает тысячи возбуждающих и ингибирующих сигналов одновременно, некоторые считают, что по умолчанию тело клетки ингибировано. При этом разные типы нейронов используют разные нейромедиаторы. Так что каждый нейрон должен тщательно «распробовать суп» из окружающих его возбуждающих и тормозящих веществ, прежде чем ответить на управляющее раздражение.

В становлении концепции химической передачи в синапсах, значительную роль сыграли исследования российских учёных – А.Ф.Самойлова, А.В.Кибякова, А.Г.Гинецинского.

Например, Самойлов изучая температурные изменения в процессе передачи возбуждения с нерва на мышцу пришёл к выводу, что они в большей степени подчёркивают химическую, а не физическую природу передачи возбуждения.

Работами А. В.Кибякова (1933) было показано, что передача возбуждения с помощью химических веществ осуществляется не только в нервно-мышечных соединениях, но и в соединениях между нервными клетками.

Гинецинский в 1935 году обнаружил, что химические вещества в нервно-мышечных синапсах вызывают на небольшом участке мембраны изменение потенциала, названного впоследствии потенциалом концевой пластинки.

Австралийский нейрофизиолог Джон Эклз был одним из самых ярых сторонников идеи электрических синапсов. В 1930-х и 1940-х годах он решительно выступал против того, что нервные клетки связываются друг с другом химически. По мнению Эклза, передача нервных импульсов была слишком быстрой, чтобы молекулы могли участвовать в этом процессе. Только электрическое взаимодействие могло обеспечить распространение нервных сигналов с такой скоростью. Он даже измерил эту скорость в 1935 году.

Невзирая на доказательства Отто Лёви и Генри Дейла продемонстрировавшие химическую связь нервной системы с двигательными нейронами, Экклз утверждал, что всё это неприменимо для нейронов мозга.

В 1944 г. он познакомился с Карлом Поппером – одним из крупнейших философов XX века, занимавшихся проблемами науки. Поппер полагал, что определяющая роль в научном прогрессе принадлежит опровержению гипотез. Он смог убедить Экклза попытаться опровергнуть собственную гипотезу, уверив его в том, что это ничуть не менее важно, чем найти доводы в её пользу.

При изучении нейронных цепей Экклз обнаружил, что некоторые из этих цепей являются не возбуждающими, а тормозными. В этих случаях возбуждение пресинаптического нейрона вызывает так называемый тормозной постсинаптический потенциал (ТПСП). С позиции «радистов» невозможно было объяснить, каким образом возбуждающий потенциал действия пресинаптической клетки может в синапсе превращаться в тормозящий постсинаптической.

За эту работу, опровергающую идею, которую он долгие годы отстаивал, спустя 12 лет, в 1963 году Экклз получит Нобелевскую премию.

Можно было говорить о решительной победе химической теории передачи информации в синапсах.

Электрический синапс

Но вот в 1957 году был открыт синапс, в котором сигнал передавался почти без задержки, передача мало зависела от температуры и почти не блокировалась магнием. Был открыт первый чисто электрический синапс.

Спор между «радистами» и «поварами» возобновился с новой силой. В 1959 году Дэвид Поттер и Эдвин Фершпан обнаружили эффективную электрическую связь между гигантским аксоном и аксоном моторного нейрона в брюшной цепочке рака. Было установлено, что возбуждение в виде электрического потенциала беспрепятственно и мгновенно передаётся в месте контакта от одного аксона к другому без всяких нейромедиаторов.

В нервной системе млекопитающих электрические синапсы тоже обнаружены, чаще всего они образуются между дендритами однотипных, близко расположенных нейронов, тогда как химические и смешанные – между аксонами и дендритами при их последовательном соединении. Однако, в ЦНС млекопитающих и человека имеется всего около 1% электрических синапсов, они более характерны и преобладают в нервных системах низкоорганизованных животных.

Перейти на страницу:

Похожие книги

Происхождение мозга
Происхождение мозга

Описаны принципы строения и физиологии мозга животных. На основе морфофункционального анализа реконструированы основные этапы эволюции нервной системы. Сформулированы причины, механизмы и условия появления нервных клеток, простых нервных сетей и нервных систем беспозвоночных. Представлена эволюционная теория переходных сред как основа для разработки нейробиологических моделей происхождения хордовых, первичноводных позвоночных, амфибий, рептилий, птиц и млекопитающих. Изложены причины возникновения нервных систем различных архетипов и их роль в определении стратегий поведения животных. Приведены примеры использования нейробиологических законов для реконструкции путей эволюции позвоночных и беспозвоночных животных, а также основные принципы адаптивной эволюции нервной системы и поведения.Монография предназначена для зоологов, психологов, студентов биологических специальностей и всех, кто интересуется проблемами эволюции нервной системы и поведения животных.

Сергей Вячеславович Савельев , Сергей Савельев

Биология, биофизика, биохимия / Зоология / Биология / Образование и наука
Энергия, секс, самоубийство. Митохондрии и смысл жизни
Энергия, секс, самоубийство. Митохондрии и смысл жизни

Испокон веков люди обращали взоры к звездам и размышляли, почему мы здесь и одни ли мы во Вселенной. Нам свойственно задумываться о том, почему существуют растения и животные, откуда мы пришли, кто были наши предки и что ждет нас впереди. Пусть ответ на главный вопрос жизни, Вселенной и вообще всего не 42, как утверждал когда-то Дуглас Адамс, но он не менее краток и загадочен — митохондрии.Они показывают нам, как возникла жизнь на нашей планете. Они объясняют, почему бактерии так долго царили на ней и почему эволюция, скорее всего, не поднялась выше уровня бактериальной слизи нигде во Вселенной. Они позволяют понять, как возникли первые сложные клетки и как земная жизнь взошла по лестнице восходящей сложности к вершинам славы. Они показывают нам, почему возникли теплокровные существа, стряхнувшие оковы окружающей среды; почему существуют мужчины и женщины, почему мы влюбляемся и заводим детей. Они говорят нам, почему наши дни в этом мире сочтены, почему мы стареем и умираем. Они могут подсказать нам лучший способ провести закатные годы жизни, избежав старости как обузы и проклятия. Может быть, митохондрии и не объясняют смысл жизни, но, по крайней мере, показывают, что она собой представляет. А разве можно понять смысл жизни, не зная, как она устроена?16+

Ник Лэйн

Биология, биофизика, биохимия / Биология / Образование и наука
Будущее мозга. Как мы изменимся в ближайшие несколько лет
Будущее мозга. Как мы изменимся в ближайшие несколько лет

Мы разговариваем друг с другом в любой точке мира, строим марсоходы и примеряем виртуальную одежду. Сегодня технологии настолько невероятны, что уже не удивляют. Но неужели это все, на что способно человечество?Книга всемирно известного нейробиолога Факундо Манеса и профессора социолингвистики Матео Ниро раскроет настоящие и будущие возможности нашего мозга. Авторы расскажут о том, что человек смог достичь в нейронауке и зачем это нужно обществу.Вы узнаете, как современные технологии влияют на наш ум и с помощью чего можно будет победить тяжелые заболевания мозга. Какие существуют невероятные нейротехнологии и почему искусственному интеллекту еще далеко до превосходства над человеком. Ученые помогут понять, как именно работает наш мозг, и чего еще мы не знаем о себе.

Матео Ниро , Факундо Манес

Биология, биофизика, биохимия / Научно-популярная литература / Образование и наука