Читаем Нейротон. Занимательные истории о нервном импульсе полностью

Но и на этом история не остановилась. В относительно недавнем январе 2019 года (первая публикация статьи – октябрь 2018) в выпуске The Journal of Physiology сообщается об удивительном феномене: авторам статьи удалось наблюдать передачу электрического сигнала между нейронами вообще в отсутствие синапсов – как химических, так и электрических… Сначала авторы просто регистрировали распространение активности в аксоне, а затем полностью перерезали его пополам, и стали постепенно раздвигать разрез. Сигнал всё равно распространялся. Только раздвинув края разреза на 400 микрон друг от друга, распространение сигнала удалось прекратить.

Так что точка в споре между «поварами» и «радистами» ещё не поставлена, наступило скорее перемирие, чем мир. У каждой стороны есть свой лауреат Нобелевской премии. И что очень важно, обе стороны спора правы (Правда, удобная позиция?).

А что если обе неправы?

[1] Скорость протекания элементарных циклов возбуждения в нервной и мышечной тканях.

Новейшая история

Вторая половина XIX века была богата открытиями в области физиологии нервных волокон, в это время были сформулированы основные законы возбуждения и распространения нервных импульсов.

Эдуард Фридрих Вильгельм Пфлюгер (Eduard Friedrich Wilhelm Pflüger; 1829—1910) в 1859 проводя исследования действии постоянного электрического тока на нерв и мышцу обнаружил, что при замыкании цепи постоянного тока на отрицательном полюсе (катоде) возникает возбуждение, а при размыкании оно отмечается на положительном полюсе (аноде); во время прохождения тока через ткань на катоде наблюдается состояние повышенной, а на аноде – пониженной возбудимости. На основании этих исследований он сформулировал закон электротона. Учение Э. Пфлюгера об электротоне, развитое впоследствии Б. Ф. Вериго, составило основу представлении о процессах возбуждения.

«Всё или ничего». Согласно закону Боудича (1840—1911), подпороговые раздражения не вызывают возбуждения («ничего»), при пороговых и надпороговых стимулах возбуждение сразу приобретает максимальную величину («всё») и уже не увеличивается при дальнейшем усилении раздражения. По этому закону функционируют и мышечные, и нервные волокна. [13]


Рисунок 14. Закон Боудича «Всё или ничего».


В 1922—1925 годах Эдгар Дуглас Эдриан воспользовавшись капиллярным электрометром и только что изобретённым ламповым усилителем Герберта Гассера смог записать электрический потенциал отдельных нервных волокон при физическом воздействии.

Случайное наблюдение, сделанное Эдрианом в процессе эксперимента в 1928 году, ещё раз доказало наличие электричества в нервных клетках. Эдриан рассказывал: – Я разместил электроды на зрительном нерве жабы в связи с некоторыми экспериментами с сетчаткой. В комнате было почти темно, и я был озадачен, услышав повторяющиеся шумы в громкоговорителе, подключённом к усилителю[1]. Шумы указывали на то, что имела место большая импульсная активность. Только когда я сравнил шумы с моими собственными

движениями по комнате, я понял, что нахожусь в поле зрения гла́за жабы, и что он сигнализирует о том, что я делаю [16].

Примечание. Ещё Дюбуа Реймон в 1849 г. Дюбуа Реймон соединив роговицу и дно только что удалённого гла́за лягушки с помощью неполяризующихся электродов с гальванометром обнаружил разность потенциалов в 4—10 мВ. Так-что заслуга Эдриана не в открытии электрического потенциала в глазу земноводного, а в обнаружении корреляции между интенсивностью воздействия и частотой следования импульсов.

Эдриан подтвердил, что нервы подчиняются принципу «все или ничего». Но он также обнаружил, что применительно к нервам закон «все ли ничего» имеет продолжение: амплитуда нервных импульсов действительно сохраняется одинаковой, но при этом – с ростом силы раздражения может формироваться серия нервных импульсов, и чем сильнее раздражитель, тем больше частота их следования. Вероятно, так обеспечивается градация интенсивности ощущений. «В связи с этим импульсация несёт гораздо большую информацию, чем просто сигнал о том, что возбуждение произошло», – писал Эдриан [16].

Кроме того, он обнаружил, что более сильный стимул активирует большее количество чувствительных волокон.

Тогда же сложилось и устойчивое представление о том, что сигналы возбуждений, приходящие на разные дендриты, суммируются в соме нервной клетки и в результате формируется исходящий сигнал в аксоне.


Рисунок 15. Примеры суммации нервных импульсов.


Однако, последние исследования нейробиологов из Израиля, опубликованные в 2018 году в научном издании Scientific Reports опровергают эту модель. Получены свидетельства того, что направление результирующего сигнала существенно может повлиять на реакцию нейрона. К примеру, слабый сигнал «слева» и примерно такой же «справа» нейрон не суммирует и не отзовётся выходным импульсом, но если сигнал с бо́льшей мощностью поступит с одной из сторон, то запустить реакцию нейрона может даже он один [17].

Перейти на страницу:

Похожие книги

Происхождение мозга
Происхождение мозга

Описаны принципы строения и физиологии мозга животных. На основе морфофункционального анализа реконструированы основные этапы эволюции нервной системы. Сформулированы причины, механизмы и условия появления нервных клеток, простых нервных сетей и нервных систем беспозвоночных. Представлена эволюционная теория переходных сред как основа для разработки нейробиологических моделей происхождения хордовых, первичноводных позвоночных, амфибий, рептилий, птиц и млекопитающих. Изложены причины возникновения нервных систем различных архетипов и их роль в определении стратегий поведения животных. Приведены примеры использования нейробиологических законов для реконструкции путей эволюции позвоночных и беспозвоночных животных, а также основные принципы адаптивной эволюции нервной системы и поведения.Монография предназначена для зоологов, психологов, студентов биологических специальностей и всех, кто интересуется проблемами эволюции нервной системы и поведения животных.

Сергей Вячеславович Савельев , Сергей Савельев

Биология, биофизика, биохимия / Зоология / Биология / Образование и наука
Энергия, секс, самоубийство. Митохондрии и смысл жизни
Энергия, секс, самоубийство. Митохондрии и смысл жизни

Испокон веков люди обращали взоры к звездам и размышляли, почему мы здесь и одни ли мы во Вселенной. Нам свойственно задумываться о том, почему существуют растения и животные, откуда мы пришли, кто были наши предки и что ждет нас впереди. Пусть ответ на главный вопрос жизни, Вселенной и вообще всего не 42, как утверждал когда-то Дуглас Адамс, но он не менее краток и загадочен — митохондрии.Они показывают нам, как возникла жизнь на нашей планете. Они объясняют, почему бактерии так долго царили на ней и почему эволюция, скорее всего, не поднялась выше уровня бактериальной слизи нигде во Вселенной. Они позволяют понять, как возникли первые сложные клетки и как земная жизнь взошла по лестнице восходящей сложности к вершинам славы. Они показывают нам, почему возникли теплокровные существа, стряхнувшие оковы окружающей среды; почему существуют мужчины и женщины, почему мы влюбляемся и заводим детей. Они говорят нам, почему наши дни в этом мире сочтены, почему мы стареем и умираем. Они могут подсказать нам лучший способ провести закатные годы жизни, избежав старости как обузы и проклятия. Может быть, митохондрии и не объясняют смысл жизни, но, по крайней мере, показывают, что она собой представляет. А разве можно понять смысл жизни, не зная, как она устроена?16+

Ник Лэйн

Биология, биофизика, биохимия / Биология / Образование и наука
Будущее мозга. Как мы изменимся в ближайшие несколько лет
Будущее мозга. Как мы изменимся в ближайшие несколько лет

Мы разговариваем друг с другом в любой точке мира, строим марсоходы и примеряем виртуальную одежду. Сегодня технологии настолько невероятны, что уже не удивляют. Но неужели это все, на что способно человечество?Книга всемирно известного нейробиолога Факундо Манеса и профессора социолингвистики Матео Ниро раскроет настоящие и будущие возможности нашего мозга. Авторы расскажут о том, что человек смог достичь в нейронауке и зачем это нужно обществу.Вы узнаете, как современные технологии влияют на наш ум и с помощью чего можно будет победить тяжелые заболевания мозга. Какие существуют невероятные нейротехнологии и почему искусственному интеллекту еще далеко до превосходства над человеком. Ученые помогут понять, как именно работает наш мозг, и чего еще мы не знаем о себе.

Матео Ниро , Факундо Манес

Биология, биофизика, биохимия / Научно-популярная литература / Образование и наука