К числу первых долгое время относилась проблема Ферма. В математике таких проблем много, но абсолютное большинство из них требует для понимания их формулировок специального образования. Нерешённых проблем с простыми формулировками гораздо меньше. Из них наиболее известны, пожалуй, следующие четыре проблемы теории чисел. Теория чисел (в ортодоксальном понимании этого термина) занимается только положительными целыми числами. Поэтому только такие числа разумеются здесь под словом «число».
Две проблемы о совершенных числах
. Число 6 делится на 1, на 2, на 3 и на 6 — эти числа 1, 2, 3, 6 сутьделителичисла 6. Если из списка делителей числа 6 мы удалим само это число, а остальные сложим, получим 6. Действительно, 1 + 2 + 3 = 6. Тем же свойством обладает число 28. Eго делителями служат числа 1, 2, 4, 7, 14, 28. Если их все, кроме 28, сложить, получим как раз 28: действительно, 1 + 2 + 4 + 7 + 14 = 28. В VI веке до н. э. это редкое свойство чисел вызывало мистический восторг у Пифагора и его учеников: по их мнению, оно свидетельствовало об особом совершенстве числа, обладающего таким свойством. А потому каждое число, совпадающее с суммой своих делителей, отличных от самого этого числа, получило титулсовершенного. Первые четыре совершенных числа (6, 28, 496 и 8128) были известны уже во II веке н. э. А в сентябре 2006 года было обнаружено сорок четвёртое совершенное число; оно колоссально, в его десятичной записи около двадцати миллионов знаков. Все найденные совершенные числа оказались чётными. И вот две простые по формулировке, но не решённые до сих пор проблемы. Существуют ли нечётные совершенные числа? Конечна или бесконечна совокупность всех совершенных чисел? Эквивалентная формулировка второй проблемы: существует ли наибольшее совершенное число?