Две проблемы о простых числах
. Напомним (мы говорим «напомним», потому что теоретически это должно быть известно из средней школы), чтопростымназывается такое число, которое, во-первых, больше единицы, а во-вторых, не имеет других делителей, кроме единицы и самого себя. Ещё в III веке до н. э. в «Началах» Евклида было установлено, что среди простых чисел нет наибольшего, их ряд 2, 3, 5, 7, 11, 13, 17, 19 и т. д. никогда не кончается; иными словами, совокупность простых чисел бесконечна. Предложение 20 девятой книги «Начал» гласит, что простых чисел больше, чем в любом предъявленном списке таковых; доказательство же этого предложения состоит в описании способа, позволяющего для любого списка простых чисел указать простое число, в этом списке не содержащееся. Отметим, что Евклид нигде не говорит о совокупности простых чисел в целом — само представление о бесконечных совокупностях как об особых сущностях появилось значительно позже. Когда-то изучение простых чисел рассматривалось как чистая игра ума; оказалось, что они играют решающую роль во многих практических задачах криптографии.Среди нерешённых проблем, связанных с простыми числами, приведём две:
проблему Гольдбаха — Эйлераипроблему близнецов.Первая была поставлена в 1742 году великим Леонардом Эйлером в его переписке с Христианом Гольдбахом. Основная деятельность обоих протекала в России; в 1764 году Гольдбах был похоронен в Москве, а Эйлер в 1783 году — в Петербурге.