Читаем О движении полностью

«Все изменения, случающиеся в природе, — писал Ломоносов, — происходят так, что если что-либо прибавится к чему-либо, то столько же отнимется от чего-то другого. Так, сколько к какому-нибудь телу присоединяется материи, столько же отнимается от другого… Так как этот закон природы всеобщ, то он простирается даже и в правила движения, и тело, побуждающее своим толчком другое к движению, столько же теряет своего движения, сколько сообщает другому, движимому им».

Ломоносов сформулировал закон сохранения кинетической энергии (движения) в общем виде. Для некоторых частных случаев этот закон высказывался и другими учеными. Например, Гюйгенс установил, что при соударении вполне упругих тел сумма произведений их масс на квадрат скоростей остается постоянной.

Закон сохранения энергии подтверждается многими наблюдениями. Расширение горячих газов в стволе ружья приводит в движение пулю, преодолевая сравнительно небольшое трение и сопротивление воздуха. За вычетом части работы, израсходованной на преодоление этих сопротивлений, вся остальная работа расширяющихся газов превращается в кинетическую энергию летящей пули[23].

Кинетическая энергия пули, в свою очередь, может совершить такую же работу. Если пуля встретит баллистический маятник, то отклонит его. Расчет показывает, что для отклонения маятника произведена такая же работа, какая была нужна для сообщения пуле ее кинетической энергии.

Оставалось только неясным, что происходит с кинетической энергией, как бы «исчезающей» при столкновении неупругих тел или при трении движущегося тела. Чтобы разгадать причину этого явления, нужно было знать, что вещество состоит из молекул (корпускул), находящихся в постоянном колебательном движении.

Высказанных М. В. Ломоносовым идей было достаточно, чтобы прийти к мысли о переходе энергии при столкновении неупругих тел или при трении в колебания корпускул, то-есть в теплоту. Нужно было только подтвердить эту мысль на опыте.

Такое наблюдение и было сделано в самом конце XVIII века.

В 1798 году английский физик Бенжамин Томпсон (1753–1814), получивший титул графа Румфорда, сообщил Лондонскому Королевскому обществу о сделанном им наблюдении превращения механического движения в теплоту. Присутствуя при сверлении стальных стволов пушек, Румфорд видел, что сверла, ствол пушки и стальные стружки сильно нагревались.

Так как при этом не происходило никаких химических процессов, то образование теплоты могло быть приписано только переходу вращательного движения сверла в тепловые колебания молекул металла.

Позднее подобные опыты были сделаны и другими физиками.

Например, при трении друг о друга двух гладких кусков льда наблюдалось их таяние. Энергично мешая лопатками воду, удалось повысить ее температуру.

Так было доказано превращение движения в теплоту. После этого стало очевидным, что кинетическая энергия не исчезает. Например, при соударении неупругих тел часть кинетической энергии переходит в теплоту и повышает температуру соударяющихся тел.

Английский физик Джемс Прескотт Джоуль (1818–1889) своими опытами определил механический эквивалент теплоты, то-есть количество ее, соответствующее определенному количеству механической энергии.

Заставляя воду протекать через узкие трубки, Джоуль установил, что механическая работа, необходимая для поднятия 1 килограмма на высоту 424 метров, превращаясь в теплоту, нагревает 1 килограмм воды на 1 градус Цельсия.

Позднее было доказано, что сохранение кинетической энергии есть проявление общего закона сохранения, приложимого ко всем видам энергии, существующим в природе.

Энергия не создается и не уничтожается, а только превращается из одного вида в другой.

Этим свойством энергии объясняется и невозможность так называемого вечного движения, то-есть создания машины, которая производила бы работу без затраты энергии.

Не только в средние века, но даже в новое время множество изобретателей трудились над созданием проектов такой машины. Большая часть их добросовестно заблуждалась, веря в возможность осуществления вечного движения.

Еще в XIII веке начались подобные попытки. Обычно такой двигатель представлял собой колесо, вращающееся на горизонтальной оси. Внутри колеса перекатывались тяжелые шары, причем они должны были на одной стороне всегда находиться дальше от оси вращения, чем на другой.

В других проектах насос должен был накачивать воду в верхние черпаки водяного колеса, которое приводит его в движение.

Совершенно очевидно, что для поднятия шаров или воды на определенную высоту нужно произвести ту же работу, которую они могут совершить опускаясь. Поэтому никакая из этих машин не может прийти в движение сама по себе. Если же привести такое колесо во вращение, то оно может вращаться, быстро замедляя свое движение, пока сообщенная ему кинетическая энергия не израсходуется на преодоление трения (причем вся эта энергия перейдет в теплоту). После этого машина остановится.

Перейти на страницу:

Все книги серии Школьная библиотека (Детгиз)

Дом с волшебными окнами. Повести
Дом с волшебными окнами. Повести

В авторский сборник Эсфири Михайловны Эмден  включены повести:«Приключения маленького актера» — рис. Б. Калаушина«Дом с волшебными окнами» — рис. Н. Радлова«Школьный год Марина Петровой» — рис. Н. Калиты1. Главный герой «Приключений маленького актера» (1958) — добрый и жизнерадостный игрушечный Петрушка — единственный друг девочки Саши. Но сидеть на одном месте не в его характере, он должен действовать, ему нужен театр, представления, публика: ведь Петрушка — прирождённый актёр…2. «Дом с волшебными окнами» (1959) — увлекательная новогодняя сказка. В этой повести-сказке может случиться многое. В один тихий новогодний вечер вдруг откроется в комнату дверь, и вместе с облаком морозного пара войдёт Бабушка-кукла и позовёт тебя в Дом с волшебными окнами…3. В повести «Школьный год Марины Петровой» (1956) мы встречаемся с весёлой, иногда беспечной и упрямой, но талантливой Мариной, ученицей музыкальной школы. В этой повести уже нет сказки. Но зато как увлекателен этот мир музыки, мир настоящего искусства!

Борис Матвеевич Калаушин , Николай Иванович Калита , Николай Эрнестович Радлов , Эсфирь Михайловна Эмден

Проза для детей / Детская проза / Сказки / Книги Для Детей

Похожие книги

Статьи и речи
Статьи и речи

Труды Максвелла Доклад математической и физической секции Британской ассоциации (О соотношении между физикой и математикой) Вводная лекция по экспериментальной физике (Значение эксперимента в теоретическом познании) О математической классификации физических величин О действиях на расстоянии Фарадей Молекулы О «Соотношении физических сил» Грова О динамическом доказательстве молекулярного строения тел Атом Притяжение Герман Людвиг Фердинанд Гельмгольц Строение тел Эфир Фарадей О цветовом зрении Труды о Максвелле М. Планк. Джемс Клерк Максвелл и его значение для теоретической физики в Германии А. Эйнштейн. Влияние Максвелла на развитие представлений о физической реальности Н. Бор. Максвелл и современная теоретическая физика Д. Турнер. Максвелл о логике динамического объяснения Р.Э. Пайерлс. Теория поля со времени Максвелла С.Дж. Вруш. Развитие кинетической теории газов (Максвелл) А.М. Ворк. Максвелл, ток смещения и симметрия Р.М. Эванс. Цветная фотография Максвелла Э. Келли. Уравнения Максвелла как свойство вихревой губки  

Джеймс Клерк Максвелл , Н. А. Арнольд

Физика / Проза прочее / Биофизика / Прочая научная литература / Образование и наука
Ткань космоса. Пространство, время и текстура реальности
Ткань космоса. Пространство, время и текстура реальности

Брайан Грин — один из ведущих физиков современности, автор «Элегантной Вселенной» — приглашает нас в очередное удивительное путешествие вглубь мироздания, которое поможет нам взглянуть в совершенно ином ракурсе на окружающую нас действительность.В книге рассматриваются фундаментальные вопросы, касающиеся классической физики, квантовой механики и космологии. Что есть пространство? Почему время имеет направление? Возможно ли путешествие в прошлое? Какую роль играют симметрия и энтропия в эволюции космоса? Что скрывается за тёмной материей? Может ли Вселенная существовать без пространства и времени?Грин детально рассматривает картину мира Ньютона, идеи Маха, теорию относительности Эйнштейна и анализирует её противоречия с квантовой механикой. В книге обсуждаются проблемы декогеренции и телепортации в квантовой механике. Анализируются многие моменты инфляционной модели Вселенной, первые доли секунды после Большого взрыва, проблема горизонта, образование галактик. Большое внимание уделено новому современному подходу к объяснению картины мира с помощью теории струн/М-теории.Грин показывает, что наш мир сильно отличается от того, к чему нас приучил здравый смысл. Автор увлекает всех нас, невзирая на уровень образования и научной подготовки, в познавательное путешествие к новым пластам реальности, которые современная физика вскрывает под слоем привычного нам мира.

Брайан Грин , Брайан Рэндолф Грин

Физика / Образование и наука
Этот «цифровой» физический мир
Этот «цифровой» физический мир

Трагедия многих талантливых одиночек, которые пытаются переосмыслить или даже подредактировать официальную физическую картину мира, заключается в том, что они основывают свои построения отнюдь не на экспериментальных реалиях. Талантливые одиночки читают учебники – наивно полагая, что в них изложены факты. Отнюдь: в учебниках изложены готовенькие интерпретации фактов, адаптированные под восприятие толпы. Причём, эти интерпретации выглядели бы очень странно в свете подлинной экспериментальной картины, известной науке. Поэтому подлинную экспериментальную картину намеренно искажают – в книге приведено множество свидетельств о том, что ФАКТЫ частью замалчиваются, а частью перевраны. И ради чего? Ради того, чтобы интерпретации выглядели правдоподобно – будучи в согласии с официальными теоретическими доктринами. На словах у учёных мужей получается красиво: ищем, мол, истину, а критерий истины – практика. А на деле у них критерием истины оказываются принятые теоретические доктрины. Ибо, если факты не вписываются в такую доктрину, то перекраивают не теорию, а факты. Ложная теория оказывается подтверждена лживой практикой. Зато самолюбие учёных не страдает. Мы, мол, верной дорогой шли, идём, и идти будем!Это не очередная «теория заговора». Просто каждый учёный понимает, что если он «попрёт против течения», то он будет рисковать репутацией, карьерой, финансированием…Успехи современных технологий не имеют к физическим теориям почти никакого отношения. Раньше мы были хорошо знакомы с ситуацией, когда на глючном и сбойном программном обеспечении иногда удавалось сделать что-то полезное. Выясняется, что достойную конкуренцию продукции крутых парней из Рэдмонда могут составить физические теории. Например, Эйнштейн тормознул физику своими творениями конкретно лет на сто. И атомную бомбу сделали не благодаря теории относительности, а вопреки ей. Но проблема не только лично в Эйнштейне с эпигонами, которые вслед за мэтром принялись наперебой навязывать реальности свои надуманные «аксиомы» и «постулаты», «наваривая» на этом «научную репутацию» и «конкретные бабки». Всё гораздо серьезнее.Добро пожаловать в реальный, то есть, «цифровой» физический мир!

Андрей Альбертович Гришаев

Физика / Образование и наука