Читаем О движении полностью

Но если снять крышку подшипника, то связь становится односторонней, или неудерживающей. Такие подшипники применяются для тяжелых водяных колес и ветряков. Подшипник без крышки не препятствует поднятию вала, удерживаемого на месте только тяжестью колеса.

Лагранж и все механики XVIII века считали, что начало возможных перемещений приложимо только к двусторонним связям. Они не применили бы это условие равновесия к водяному колесу с подшипниками без крышек.

М. В. Остроградский распространил начало возможных перемещений и на односторонние связи. Он доказал, что в этом случае для равновесия необходимо, чтобы возможная работа всех приложенных к телу сил была меньше или равна нулю (возможность отрицательной работы объясняется, конечно, тем, что движению приписывается знак в зависимости от направления).

Независимо от своего современника — английского физика Вильяма Гамильтона (1805–1865), М. В. Остроградский ввел в механику так называемый принцип наименьшего действия. Это один из важнейших законов механики. Он гласит, что при свободном перемещении тел из одного положения в другое движение происходит так, что работа сил имеет наименьшую величину.

Зарождение этого принципа в виде философской мысли, будто природа «стремится» к тому, чтобы все действия совершались с наименьшей затратой энергии (или, как говорили тогда, силы), относится к давним временам. В XVII веке такая идея была высказана французским математиком Пьером Ферма (1601–1665), сумевшим применить ее к выводу закона преломления света.

Ферма предположил, что распространение света в воде и стекле встречает большее сопротивление, чем в воздухе. Он стал искать, по какому пути должен идти луч света, чтобы общее сопротивление в обеих средах (воздух — стекло) вместе было наименьшим. Понятно, Что такой путь луч пройдет и в наикратчайшее время.

Оказалось, что для этого при переходе в более плотную среду луч должен преломиться, приблизившись к перпендикуляру, восстановленному в точке его падения к поверхности раздела. Отклонение должно быть таким, чтобы отношение синусов угла падения и преломления было равно отношению скоростей в двух средах.

Однако принцип наименьшего действия оставался отвлеченным и не мог быть признан физическим законом.

Впоследствии начало наименьшего действия получило обоснование и развитие в работах Эйлера, который показал, что этот принцип соблюдается и в движении тел под действием центральных сил, например планет.

Наконец Остроградский и Гамильтон, независимо друг от друга, придали этому принципу окончательную форму закона механики.

В тесной связи с исследованиями в механике стояли и математические работы М. В. Остроградского.

Этот замечательный русский математик развил так называемое вариационное исчисление, главнейшая задача которого — отыскание наибольшего и наименьшего значения различных величин. Примером вопросов, решаемых с помощью этого исчисления, может служить следующий: найти кривую, двигаясь по которой под действием тяжести тело пришло бы в кратчайшее время из одной точки над земной поверхностью в другую.

М. В. Остроградский исследовал и проблемы баллистики — науки о движении снаряда. Он работал и в области небесной механики, дав новые доказательства некоторым из ее теорем.

Работы М. В. Остроградского были большим шагом вперед в аналитической механике и математике. Они прославили имя этого замечательного русского ученого, и Парижская Академия наук избрала его своим членом-корреспондентом.

Значительные успехи в динамике вращающегося тела были достигнуты благодаря работам русского математика С. В. Ковалевской (1850–1891).

Дочь генерала-артиллериста, С. В. Ковалевская получила хорошее образование. Еще в раннем возрасте она проявила замечательные математические способности. Пятнадцати лет С. В. Ковалевская уже брала уроки высшей математики в Москве. Через несколько лет она училась у одного из известнейших математиков Германии, Вейерштрасса, и слушала лекции знаменитого физика Гельмгольца.

По представлению Вейерштрасса, Геттингенский университет присудил С. В. Ковалевской за три математические работы ученую степень доктора без установленных для этого экзаменов.

В одной из этих работ С. В. Ковалевская исследовала вопрос о кольце Сатурна, развивая идеи знаменитого французского математика Пьера Лапласа (1749–1827), изложенные им в труде «Небесная механика».

По возвращении в Россию С. В. Ковалевская не могла бы в те времена найти большего приложения своих математических познаний, чем преподавание арифметики в младших классах гимназии.

Просьба С. В. Ковалевской допустить ее к сдаче экзаменов на степень магистра при Московском университете была отклонена. Тогда С. В. Ковалевская решила покинуть Россию и вернулась в Берлин.

В 1883 году С. В. Ковалевская получила приглашение читать лекции по математике в Стокгольмском университете. Она уехала в Швецию, где прочитала двенадцать курсов по разным отделам математики.

Перейти на страницу:

Все книги серии Школьная библиотека (Детгиз)

Дом с волшебными окнами. Повести
Дом с волшебными окнами. Повести

В авторский сборник Эсфири Михайловны Эмден  включены повести:«Приключения маленького актера» — рис. Б. Калаушина«Дом с волшебными окнами» — рис. Н. Радлова«Школьный год Марина Петровой» — рис. Н. Калиты1. Главный герой «Приключений маленького актера» (1958) — добрый и жизнерадостный игрушечный Петрушка — единственный друг девочки Саши. Но сидеть на одном месте не в его характере, он должен действовать, ему нужен театр, представления, публика: ведь Петрушка — прирождённый актёр…2. «Дом с волшебными окнами» (1959) — увлекательная новогодняя сказка. В этой повести-сказке может случиться многое. В один тихий новогодний вечер вдруг откроется в комнату дверь, и вместе с облаком морозного пара войдёт Бабушка-кукла и позовёт тебя в Дом с волшебными окнами…3. В повести «Школьный год Марины Петровой» (1956) мы встречаемся с весёлой, иногда беспечной и упрямой, но талантливой Мариной, ученицей музыкальной школы. В этой повести уже нет сказки. Но зато как увлекателен этот мир музыки, мир настоящего искусства!

Борис Матвеевич Калаушин , Николай Иванович Калита , Николай Эрнестович Радлов , Эсфирь Михайловна Эмден

Проза для детей / Детская проза / Сказки / Книги Для Детей

Похожие книги

Статьи и речи
Статьи и речи

Труды Максвелла Доклад математической и физической секции Британской ассоциации (О соотношении между физикой и математикой) Вводная лекция по экспериментальной физике (Значение эксперимента в теоретическом познании) О математической классификации физических величин О действиях на расстоянии Фарадей Молекулы О «Соотношении физических сил» Грова О динамическом доказательстве молекулярного строения тел Атом Притяжение Герман Людвиг Фердинанд Гельмгольц Строение тел Эфир Фарадей О цветовом зрении Труды о Максвелле М. Планк. Джемс Клерк Максвелл и его значение для теоретической физики в Германии А. Эйнштейн. Влияние Максвелла на развитие представлений о физической реальности Н. Бор. Максвелл и современная теоретическая физика Д. Турнер. Максвелл о логике динамического объяснения Р.Э. Пайерлс. Теория поля со времени Максвелла С.Дж. Вруш. Развитие кинетической теории газов (Максвелл) А.М. Ворк. Максвелл, ток смещения и симметрия Р.М. Эванс. Цветная фотография Максвелла Э. Келли. Уравнения Максвелла как свойство вихревой губки  

Джеймс Клерк Максвелл , Н. А. Арнольд

Физика / Проза прочее / Биофизика / Прочая научная литература / Образование и наука
Ткань космоса. Пространство, время и текстура реальности
Ткань космоса. Пространство, время и текстура реальности

Брайан Грин — один из ведущих физиков современности, автор «Элегантной Вселенной» — приглашает нас в очередное удивительное путешествие вглубь мироздания, которое поможет нам взглянуть в совершенно ином ракурсе на окружающую нас действительность.В книге рассматриваются фундаментальные вопросы, касающиеся классической физики, квантовой механики и космологии. Что есть пространство? Почему время имеет направление? Возможно ли путешествие в прошлое? Какую роль играют симметрия и энтропия в эволюции космоса? Что скрывается за тёмной материей? Может ли Вселенная существовать без пространства и времени?Грин детально рассматривает картину мира Ньютона, идеи Маха, теорию относительности Эйнштейна и анализирует её противоречия с квантовой механикой. В книге обсуждаются проблемы декогеренции и телепортации в квантовой механике. Анализируются многие моменты инфляционной модели Вселенной, первые доли секунды после Большого взрыва, проблема горизонта, образование галактик. Большое внимание уделено новому современному подходу к объяснению картины мира с помощью теории струн/М-теории.Грин показывает, что наш мир сильно отличается от того, к чему нас приучил здравый смысл. Автор увлекает всех нас, невзирая на уровень образования и научной подготовки, в познавательное путешествие к новым пластам реальности, которые современная физика вскрывает под слоем привычного нам мира.

Брайан Грин , Брайан Рэндолф Грин

Физика / Образование и наука
Этот «цифровой» физический мир
Этот «цифровой» физический мир

Трагедия многих талантливых одиночек, которые пытаются переосмыслить или даже подредактировать официальную физическую картину мира, заключается в том, что они основывают свои построения отнюдь не на экспериментальных реалиях. Талантливые одиночки читают учебники – наивно полагая, что в них изложены факты. Отнюдь: в учебниках изложены готовенькие интерпретации фактов, адаптированные под восприятие толпы. Причём, эти интерпретации выглядели бы очень странно в свете подлинной экспериментальной картины, известной науке. Поэтому подлинную экспериментальную картину намеренно искажают – в книге приведено множество свидетельств о том, что ФАКТЫ частью замалчиваются, а частью перевраны. И ради чего? Ради того, чтобы интерпретации выглядели правдоподобно – будучи в согласии с официальными теоретическими доктринами. На словах у учёных мужей получается красиво: ищем, мол, истину, а критерий истины – практика. А на деле у них критерием истины оказываются принятые теоретические доктрины. Ибо, если факты не вписываются в такую доктрину, то перекраивают не теорию, а факты. Ложная теория оказывается подтверждена лживой практикой. Зато самолюбие учёных не страдает. Мы, мол, верной дорогой шли, идём, и идти будем!Это не очередная «теория заговора». Просто каждый учёный понимает, что если он «попрёт против течения», то он будет рисковать репутацией, карьерой, финансированием…Успехи современных технологий не имеют к физическим теориям почти никакого отношения. Раньше мы были хорошо знакомы с ситуацией, когда на глючном и сбойном программном обеспечении иногда удавалось сделать что-то полезное. Выясняется, что достойную конкуренцию продукции крутых парней из Рэдмонда могут составить физические теории. Например, Эйнштейн тормознул физику своими творениями конкретно лет на сто. И атомную бомбу сделали не благодаря теории относительности, а вопреки ей. Но проблема не только лично в Эйнштейне с эпигонами, которые вслед за мэтром принялись наперебой навязывать реальности свои надуманные «аксиомы» и «постулаты», «наваривая» на этом «научную репутацию» и «конкретные бабки». Всё гораздо серьезнее.Добро пожаловать в реальный, то есть, «цифровой» физический мир!

Андрей Альбертович Гришаев

Физика / Образование и наука