Читаем О движении полностью

Кроме С. К. Котельникова, можно было бы назвать еще несколько имен русских профессоров механики XVIII века. Все они находились под сильным влиянием работ Л. Эйлера и идей М. В. Ломоносова.

М. В. Ломоносов и Л. Эйлер в воззрениях на силу были сторонниками учения Декарта. Понятие о силе, действующей на расстоянии, казалось им возвратом к «скрытым качествам» аристотелианцев. Сила, как думали эти ученые, есть проявление движения частиц материи, действующих непосредственным ударом или давлением.

«…Причиной тех сил, вследствие которых изменяется состояние тел, — писал Эйлер, — следует считать не только инерцию, но сочетание последней с непроницаемостью».

М. В. Ломоносов указывал, что и сам Ньютон не считал тяготение свойством тел, что только его последователи приписали материи способность притяжения на расстоянии.

Не отрицая вместе с Ньютоном, что движения небесных тел происходят так, как будто они взаимно притягивают друг друга, Эйлер и другие механики пользовались при математических расчетах принципом всемирного тяготения. Но они были убеждены, что тяготение — кажущееся явление, которое должно найти механическое объяснение в ударе или давлении частиц материи.

Эти воззрения господствовали в русской механике до начала 90-х годов XVIII века. Но успехи небесной механики, пользовавшейся принципом всемирного тяготения, заставили забыть о загадочности этого явления.

К тому времени интерес ученых к вопросу о природе тяготения уже ослабел. Ученые довольствовались тем, что расчеты, основанные на принципе всемирного тяготения, оправдываются в действительности.

В XIX веке в развитии механики в России наметилось два течения.

Одни из русских ученых интересовались механикой как приложением математики. Другие разрешали теоретические проблемы техники.

Дальнейшее развитие аналитической механики

Конец XVIII и начало XIX века ознаменовались быстрым развитием техники. Началась постройка железных дорог. Сооружались пароходы. Возрастал интерес к механике.

В России один за другим открывались университеты — в Казани, Петербурге, Харькове. Они стали выпускать русских математиков и механиков.

Гениальным математиком и механиком первой половины XIX века был М. В. Остроградский (1801–1862).

Сын небогатого помещика, М. В. Остроградский, не окончив гимназии, хотел стать офицером. Он мечтал о блестящем гвардейском мундире и не поверил бы, что сделается ученым.

Родители повезли его в Петербург, чтобы поместить в полк. Но по дороге, под влиянием советов одного родственника, переменили решение: юношу начали подготовлять в высшее учебное заведение.

В 1817 году М. В. Остроградский поступил в Харьковский университет. Даже став студентом, он не сразу понял, в чем его призвание. Только в конце второго года учебы М. В. Остроградский почувствовал большое влечение к математике и проявил замечательные способности в этой науке. Он не только на лету усваивал труднейшие теоремы, но и делал самостоятельные математические выводы.

Успешно изучая математику и точные науки, М. В. Остроградский не посещал лекций богословия и философии. Поэтому, по настоянию реакционной части педагогического совета, ему не был выдан университетский диплом.

Тогда в 1822 году М. В. Остроградский уехал в Париж. Там он слушал лекции знаменитейших математиков. Через четыре года он сам уже написал научную работу — исследование волнового движения жидкости в цилиндрическом бассейне.

Эта работа получила лестные отзывы французских ученых. Имя М. В. Остроградского скоро приобрело в мире математиков известность. Когда через год он возвратился в Россию, то стал центром внимания петербургского математического кружка. В 1830 году М. В. Остроградский был избран в экстраординарные, а через год — в ординарные академики Российской Академии наук. М. В. Остроградский читал лекции по математике и механике в Педагогическом институте, в Морском кадетском корпусе, в Михайловской артиллерийской академии, но не оставлял исследовательской деятельности. Он опубликовал десятки замечательных работ по математике и механике. Важнейшие из них были посвящены обобщению принципов механики, и в числе их — началу возможных перемещений.

Как уже было сказано ранее, начало возможных перемещений возникло при изучении действия машин. Оно дает возможность составить уравнение равновесия системы тел, соединенных материальными связями. Пользуясь началом возможных перемещений, можно рассчитать любой механизм, то-есть определить размеры всех его частей.

Однако до Остроградского начало возможных перемещений выражалось в такой форме, что могло применяться к расчету только системы тел с удерживающими или двусторонними связями.

Такие связи, допуская движение части механизма в одну сторону, позволяют ему двигаться и в противоположную и, наоборот, не допуская движения в одну сторону, не допускают его и в другую.

Обыкновенный подшипник представляет собой пример двусторонней, или удерживающей, связи: он не «дозволяет» (как писали в курсах механики) ни опускания, ни поднятия вращающейся в нем шейки вала.

Перейти на страницу:

Все книги серии Школьная библиотека (Детгиз)

Дом с волшебными окнами. Повести
Дом с волшебными окнами. Повести

В авторский сборник Эсфири Михайловны Эмден  включены повести:«Приключения маленького актера» — рис. Б. Калаушина«Дом с волшебными окнами» — рис. Н. Радлова«Школьный год Марина Петровой» — рис. Н. Калиты1. Главный герой «Приключений маленького актера» (1958) — добрый и жизнерадостный игрушечный Петрушка — единственный друг девочки Саши. Но сидеть на одном месте не в его характере, он должен действовать, ему нужен театр, представления, публика: ведь Петрушка — прирождённый актёр…2. «Дом с волшебными окнами» (1959) — увлекательная новогодняя сказка. В этой повести-сказке может случиться многое. В один тихий новогодний вечер вдруг откроется в комнату дверь, и вместе с облаком морозного пара войдёт Бабушка-кукла и позовёт тебя в Дом с волшебными окнами…3. В повести «Школьный год Марины Петровой» (1956) мы встречаемся с весёлой, иногда беспечной и упрямой, но талантливой Мариной, ученицей музыкальной школы. В этой повести уже нет сказки. Но зато как увлекателен этот мир музыки, мир настоящего искусства!

Борис Матвеевич Калаушин , Николай Иванович Калита , Николай Эрнестович Радлов , Эсфирь Михайловна Эмден

Проза для детей / Детская проза / Сказки / Книги Для Детей

Похожие книги

Статьи и речи
Статьи и речи

Труды Максвелла Доклад математической и физической секции Британской ассоциации (О соотношении между физикой и математикой) Вводная лекция по экспериментальной физике (Значение эксперимента в теоретическом познании) О математической классификации физических величин О действиях на расстоянии Фарадей Молекулы О «Соотношении физических сил» Грова О динамическом доказательстве молекулярного строения тел Атом Притяжение Герман Людвиг Фердинанд Гельмгольц Строение тел Эфир Фарадей О цветовом зрении Труды о Максвелле М. Планк. Джемс Клерк Максвелл и его значение для теоретической физики в Германии А. Эйнштейн. Влияние Максвелла на развитие представлений о физической реальности Н. Бор. Максвелл и современная теоретическая физика Д. Турнер. Максвелл о логике динамического объяснения Р.Э. Пайерлс. Теория поля со времени Максвелла С.Дж. Вруш. Развитие кинетической теории газов (Максвелл) А.М. Ворк. Максвелл, ток смещения и симметрия Р.М. Эванс. Цветная фотография Максвелла Э. Келли. Уравнения Максвелла как свойство вихревой губки  

Джеймс Клерк Максвелл , Н. А. Арнольд

Физика / Проза прочее / Биофизика / Прочая научная литература / Образование и наука
Ткань космоса. Пространство, время и текстура реальности
Ткань космоса. Пространство, время и текстура реальности

Брайан Грин — один из ведущих физиков современности, автор «Элегантной Вселенной» — приглашает нас в очередное удивительное путешествие вглубь мироздания, которое поможет нам взглянуть в совершенно ином ракурсе на окружающую нас действительность.В книге рассматриваются фундаментальные вопросы, касающиеся классической физики, квантовой механики и космологии. Что есть пространство? Почему время имеет направление? Возможно ли путешествие в прошлое? Какую роль играют симметрия и энтропия в эволюции космоса? Что скрывается за тёмной материей? Может ли Вселенная существовать без пространства и времени?Грин детально рассматривает картину мира Ньютона, идеи Маха, теорию относительности Эйнштейна и анализирует её противоречия с квантовой механикой. В книге обсуждаются проблемы декогеренции и телепортации в квантовой механике. Анализируются многие моменты инфляционной модели Вселенной, первые доли секунды после Большого взрыва, проблема горизонта, образование галактик. Большое внимание уделено новому современному подходу к объяснению картины мира с помощью теории струн/М-теории.Грин показывает, что наш мир сильно отличается от того, к чему нас приучил здравый смысл. Автор увлекает всех нас, невзирая на уровень образования и научной подготовки, в познавательное путешествие к новым пластам реальности, которые современная физика вскрывает под слоем привычного нам мира.

Брайан Грин , Брайан Рэндолф Грин

Физика / Образование и наука
Этот «цифровой» физический мир
Этот «цифровой» физический мир

Трагедия многих талантливых одиночек, которые пытаются переосмыслить или даже подредактировать официальную физическую картину мира, заключается в том, что они основывают свои построения отнюдь не на экспериментальных реалиях. Талантливые одиночки читают учебники – наивно полагая, что в них изложены факты. Отнюдь: в учебниках изложены готовенькие интерпретации фактов, адаптированные под восприятие толпы. Причём, эти интерпретации выглядели бы очень странно в свете подлинной экспериментальной картины, известной науке. Поэтому подлинную экспериментальную картину намеренно искажают – в книге приведено множество свидетельств о том, что ФАКТЫ частью замалчиваются, а частью перевраны. И ради чего? Ради того, чтобы интерпретации выглядели правдоподобно – будучи в согласии с официальными теоретическими доктринами. На словах у учёных мужей получается красиво: ищем, мол, истину, а критерий истины – практика. А на деле у них критерием истины оказываются принятые теоретические доктрины. Ибо, если факты не вписываются в такую доктрину, то перекраивают не теорию, а факты. Ложная теория оказывается подтверждена лживой практикой. Зато самолюбие учёных не страдает. Мы, мол, верной дорогой шли, идём, и идти будем!Это не очередная «теория заговора». Просто каждый учёный понимает, что если он «попрёт против течения», то он будет рисковать репутацией, карьерой, финансированием…Успехи современных технологий не имеют к физическим теориям почти никакого отношения. Раньше мы были хорошо знакомы с ситуацией, когда на глючном и сбойном программном обеспечении иногда удавалось сделать что-то полезное. Выясняется, что достойную конкуренцию продукции крутых парней из Рэдмонда могут составить физические теории. Например, Эйнштейн тормознул физику своими творениями конкретно лет на сто. И атомную бомбу сделали не благодаря теории относительности, а вопреки ей. Но проблема не только лично в Эйнштейне с эпигонами, которые вслед за мэтром принялись наперебой навязывать реальности свои надуманные «аксиомы» и «постулаты», «наваривая» на этом «научную репутацию» и «конкретные бабки». Всё гораздо серьезнее.Добро пожаловать в реальный, то есть, «цифровой» физический мир!

Андрей Альбертович Гришаев

Физика / Образование и наука