Читаем Опционы полностью

Рассмотрим пример торговой стратегии, использующей такой способ распределения капитала, при котором показатель «эквивалент позиции в акциях» одинаков для всех комбинаций. Предположим, что M = $1 000 000 и что портфель формируется из 20 акций, входящих в S&P 500. Для каждой из них 28 августа 2010 г. были сгенерированы стрэддлы, состоящие из одного опциона колл и одного опциона пут с датой экспирации 17 сентября 2010 г. и страйками, ближайшими к текущим ценам акций. Котировки опционов брались на закрытие дня как полусумма цен спроса и предложения.

Равенство эквивалентов означает akUk = ajUj для каждой пары комбинаций i и j. Из приведенного выше равенства следует формула для всех

j:



В таблице 4.3.1 приведено количество стрэддлов, получаемое при распределении капитала по равному эквиваленту. Эти количества рассчитаны таким образом, чтобы соблюдались два условия, необходимые для выполнения требований данной стратегии – равенство эквивалентов для всех акций и суммарный эквивалент портфеля $1 000 000. Например, для акции DELL, учитывая, что m = 20 и стоимость акции U7 = 11,75, число стрэддлов составляет a7 = 1 000 000/(20 × 1,75) = 4255,32. Мы для простоты округляем расчеты до двух цифр после запятой и не обращаем внимания на кратность лотов, принятую в реальной торговле.

Распределение капитала обратно пропорционально премии

Распределение капитала по премиям означает, что размер позиции по каждой комбинации определяется исходя из объема ее опционной премии. Рассмотрим в качестве примера торговую стратегию, основанную на таком принципе распределения капитала, который требует, чтобы суммарные премии, полученные от продажи всех экземпляров одной комбинации, были одинаковы. Это означает, что чем больше премия одной комбинации, тем меньше ее экземпляров будет включено в портфель. Поэтому такой подход называется «обратно пропорциональным».

Продемонстрируем данную методику распределения капитала на примере тех же комбинаций, что в предыдущем примере. Пусть pj – премия j-й комбинации, a aj – число ее экземпляров в портфеле. Равенство премий в портфеле aj pj = akpk означает, что числа (

a1, a2am) обратно пропорциональны абсолютным значениям премий отдельных комбинаций: Формально количество экземпляров каждой комбинации в портфеле определяется по формуле



В нашем примере сумма отношений цен акций к премиям равна Премии комбинаций и соответствующие им значения aj приведены в таблице 4.3.1. Так, например, количество комбинаций для акции AAPL, премия стрэддла которой составляет p2

= $14,65, рассчитывается как:


Сравнение двух принципов распределения капитала

Оба описанных нами способа распределения капитала по показателям, не связанным с оценкой доходности и риска, дали достаточно близкие результаты (таблица 4.3.1). Это объясняется тем, что чем дороже акция, тем меньшее количество опционов должно быть исполнено для получения заданного эквивалента. С другой стороны, абсолютная величина опционной премии обычно коррелирует с ценой акции и поэтому для более дорогих акций требуется продать меньше комбинаций для получения заданного объема премии.



Вместе с тем, хотя количество комбинаций в портфелях, сформированных по двум рассмотренным принципам, довольно близко, оно не полностью идентично. Это хорошо видно на рис. 4.3.1, каждая точка на котором представляет одну из 20 комбинаций, входящих в состав портфеля. По горизонтальной оси отложен размер позиции, создаваемой при распределении капитала по принципу эквивалента; по вертикальной оси – размер позиции при распределении капитала по премии. Если бы результаты двух методов были одинаковы, то все точки-комбинации расположились бы вдоль показанной на рисунке наклонной линии. Однако мы наблюдаем достаточно большой разброс точек вдоль данной линии.

Причина дивергенции между двумя способами распределения капитала заключается в том, что корреляция между премией и ценой акции не абсолютна. Цена базового актива является далеко не единственным фактором, влияющим на стоимость опциона. Одним из основных факторов, определяющих стоимость опциона, является степень неопределенности относительно будущей цены базового актива (выражаемая обычно посредствам волатильности). Поэтому для двух акций, имеющих одинаковую стоимость (и совпадающих по другим параметрам), размер премии может быть разным. Следовательно, при прочих равных условиях комбинация с более высокой премией является более рискованной. Таким образом, получается, что более рискованные комбинации получают меньше капитала.



Перейти на страницу:

Похожие книги

Строить. Неортодоксальное руководство по созданию вещей, которые стоит делать
Строить. Неортодоксальное руководство по созданию вещей, которые стоит делать

Тони Фаделл возглавлял команды, создавшие iPod, iPhone и Nest Learning Thermostat, и за 30 с лишним лет работы в Кремниевой долине узнал о лидерстве, дизайне, стартапах, Apple, Google, принятии решений, наставничестве, сокрушительных неудачах и невероятных успехах столько, что хватило бы на целую энциклопедию. Тони использует примеры, которые мгновенно захватывают внимание, например, процесс создания самых первых iPod и iPhone. Каждая глава призвана помочь читателю решить проблему, с которой он сталкивается в данный момент - как получить финансирование для своего стартапа, уйти с работы или нет, или просто как вести себя с придурком в соседнем кабинете. Тони прокладывал свой путь к успеху рядом с такими наставниками, как Стив Джобс и Билл Кэмпбелл, иконами Кремниевой долины, которые снова и снова добивались успеха. Но Тони не следует кредо Кремниевой долины, согласно которому для создания чего-то великого необходимо изобретать все с нуля. Его советы нестандартны, потому что они старой закалки. Тони понял, что человеческая природа не меняется. Не нужно изобретать способы руководства и управления - нужно изобретать то, что ты делаешь. Тони Фаделл – американский топ-менеджер. Он создал iPod и iPhone, основал компанию Nest и создал самообучающийся термостат Nest. За свою карьеру Тони стал автором более 300 патентов. Сейчас он возглавляет инвестиционную и консультационную компанию Future Shape, где занимается наставничеством нового поколения стартапов, которые меняют мир.  

Tony Fadell , Тони Фаделл

Финансы / Прочая компьютерная литература / Банковское дело