Эти рассуждения позволяют создать показатель, выражающий косвенным образом степень рискованности комбинации. Можно утверждать, что точки, расположенные ниже линии на рис. 4.3.1 соответствуют более рискованным комбинациям с более высокой премией. Количественно это можно выразить через отношение числа экземпляров комбинации, получаемого по формуле 4.3.2, к числу, получаемому по формуле 4.3.3. В результате получим показатель рискованности:
Из полученной формулы следует, что показатель рискованности равен произведению отношения премии
Следует отметить, что показатель рискованности, рассчитываемый по формуле 4.3.4, может сам по себе использоваться для решения задачи распределения капитала, что позволит учитывать параллельно с премией и ценой акции еще и величину риска, ассоциированного с данной комбинацией. При этом необходимо оговориться, что данный показатель основывается на относительной дороговизне опционов, но не принимает в расчет степень ее обоснованность (с точки зрения исторической волатильности или ожидаемых новостей). Поэтому он не может претендовать на полное и всеобъемлющее выражение риска, а должен рассматриваться лишь как один из возможных инструментов решения задачи распределения капитала.
4.3.2. Показатели, выражающие оценку доходности и риска
Можно создать большое количество различных показателей, выражающих тем или иным образом оценку будущей доходности и прогноз рисков. Здесь мы ограничимся рассмотрением двух показателей доходности (математическое ожидание и вероятность прибыли) и трех показателей риска (дельта, коэффициент асимметрии и VaR).
В предыдущем разделе мы рассчитывали количество экземпляров каждой комбинации исходя непосредственно из параметров самой комбинации или ее базового актива. Применительно к показателям, оценивающим доходность и риск, предпочтителен (а во многих случаях и единственно возможен) более общий подход, основанный на распределении капитала с помощью набора весов. Для этого необходимо задать функцию j(
Весовая функция может применяться к двум типам показателей, которые мы будем условно называть «позитивными» и «негативными». Для позитивных показателей весовая функция φ(
Независимо от вида функции φ(
Способ вычисления количества экземпляров комбинации
или, что то же самое, но с помощью константы μ:
Если выделяемый для инвестирования капитал
В дальнейших исследованиях мы будем использовать подход, основанный на суммарном эквиваленте портфеля (формула 4.3.7).
Математическое ожидание и вероятность прибыли