Читаем Опционы полностью

Из графика следует, что при распределении капитала по выпуклой функции четыре комбинации с наибольшими значениями показателя имеют больший вес, чем при формировании портфеля по исходной весовой функции (эти комбинации располагаются в интервале высоких значений исходной функции, где кривая выпуклой функции проходит над прямой линией, соответствующей исходной функции). Для одной из комбинаций веса, полученные по выпуклой и исходной функциям, совпадают (эта комбинация располагается в точке пересечения исходной и выпуклой функции). Остальные комбинации при распределении капитала по выпуклой функции имеют меньший вес, чем при формировании портфеля по исходной функции (эти комбинации располагаются в интервале низких значений исходной функции, где кривая выпуклой функции проходит ниже линии исходной функции).

В том случае, когда капитал распределялся по вогнутой функции, пять комбинаций с наибольшими значениями показателя имеют меньший вес, чем при формировании портфеля по исходной функции (эти комбинации располагаются в интервале высоких значений исходной функции, где кривая вогнутой функции проходит под прямой линией, соответствующей исходной функции). Остальные 15 комбинаций имеют меньший вес, чем при формировании портфеля по исходной функции (эти комбинации располагаются в интервале низких значений исходной функции, где кривая вогнутой функции проходит выше линии исходной функции).

Из приведенного описания следует важный вывод: портфели, создаваемые с помощью выпуклой функции, представляют более агрессивный подход к распределению капитала

, поскольку комбинации с высокими значениями показателя получают непропорционально больше капитала (а комбинации с низкими значениями – непропорционально меньше), чем при формировании портфеля по исходной весовой функции. Обратное утверждение справедливо для вогнутой функции, отражающей более консервативный подход к распределению капитала.

Кроме того, при использовании выпуклой функции распределение капитала внутри портфеля является более концентрированным (несколько комбинаций получают большую часть капитала). Формирование портфеля по вогнутой функции приводит к более равномерному распределению капитала между элементами портфеля. Следовательно, портфели, создаваемые с помощью выпуклой функции, являются менее диверсифицированными, чем портфели, соответствующие вогнутой функции. Это также является указанием на то, что первый подход более агрессивен, чем второй.

Сравнение выпуклой и вогнутой весовых функций по прибыли

Смоделируем на периоде 2002–2010 гг. две торговые стратегии, аналогичные по всем параметрам той, что была описана в разделе 4.4.1, за исключением принципа распределения капитала. В одном случае будем распределять капитал по выпуклой функции (формула 4.4.1, n

= 2), в другом случае – по вогнутой функции (формула 4.4.1, n = 0,5). В качестве показателя для формирования портфеля будем использовать математическое ожидание прибыли.

Всего на протяжении периода моделирования было построено 6448 портфелей для выпуклой функции и столько же – для вогнутой. Начнем со сравнения прибылей и убытков, получаемых при использовании этих двух функций для распределения капитала. Для этого рассмотрим зависимость между прибылью портфеля, получаемой при распределении капитала с помощью трансформированной весовой функции, и прибылью, получаемой при формировании портфеля на основании исходной весовой функции.

Распределение точек в двумерной системе координат (рис. 4.4.9) позволяет сделать выводы об эффекте применения трансформированных весовых функций. Для наглядности мы построили на плоскости регрессии линию «безразличия» с коэффициентом наклона равным 1. Прибыль портфелей, расположенных на этой линии одинакова при распределении капитала по исходной и по трансформированной весовой функции. Если использовать вертикальную ось для значений прибыли, получаемой при распределении капитала по трансформированной весовой функции, а горизонтальную ось – для прибыли по исходной функции, то точки, расположенные выше линии безразличия, обозначают портфели, для которых применение трансформированной функции привело к увеличению прибыли или уменьшению убытка (по сравнению с тем, что было бы, если бы капитал распределялся по исходной функции).

Перейти на страницу:

Похожие книги

Строить. Неортодоксальное руководство по созданию вещей, которые стоит делать
Строить. Неортодоксальное руководство по созданию вещей, которые стоит делать

Тони Фаделл возглавлял команды, создавшие iPod, iPhone и Nest Learning Thermostat, и за 30 с лишним лет работы в Кремниевой долине узнал о лидерстве, дизайне, стартапах, Apple, Google, принятии решений, наставничестве, сокрушительных неудачах и невероятных успехах столько, что хватило бы на целую энциклопедию. Тони использует примеры, которые мгновенно захватывают внимание, например, процесс создания самых первых iPod и iPhone. Каждая глава призвана помочь читателю решить проблему, с которой он сталкивается в данный момент - как получить финансирование для своего стартапа, уйти с работы или нет, или просто как вести себя с придурком в соседнем кабинете. Тони прокладывал свой путь к успеху рядом с такими наставниками, как Стив Джобс и Билл Кэмпбелл, иконами Кремниевой долины, которые снова и снова добивались успеха. Но Тони не следует кредо Кремниевой долины, согласно которому для создания чего-то великого необходимо изобретать все с нуля. Его советы нестандартны, потому что они старой закалки. Тони понял, что человеческая природа не меняется. Не нужно изобретать способы руководства и управления - нужно изобретать то, что ты делаешь. Тони Фаделл – американский топ-менеджер. Он создал iPod и iPhone, основал компанию Nest и создал самообучающийся термостат Nest. За свою карьеру Тони стал автором более 300 патентов. Сейчас он возглавляет инвестиционную и консультационную компанию Future Shape, где занимается наставничеством нового поколения стартапов, которые меняют мир.  

Tony Fadell , Тони Фаделл

Финансы / Прочая компьютерная литература / Банковское дело