Читаем Опционы полностью

Использование вогнутой весовой функции для распределения капитала внутри портфеля изменило принципиальным образом форму распределения индекса концентрированности капитала (сравни левый средний график рис. 4.4.7 и рис. 4.4.10). В этом случае трансформация весовой функции привела к почти равномерному распределению индекса концентрированности. С частотой приблизительно равной 4–6 % случаев половина капитала инвестировалась в 1 % комбинаций, 2 % комбинаций и так далее до порядка 18 % комбинаций.

Таким образом, мы показали, что распределение капитала с помощью выпуклой весовой функции приводит к созданию высококонцентрированных портфелей, в которых относительно большая доля капитала инвестируется в малое количество комбинаций. С другой стороны, использование вогнутой весовой функции способствует построению портфелей с гораздо более равномерным распределением капитала. Поскольку степень концентрированности капитала отражает уровень диверсификации портфеля, можно утверждать, что распределение капитала с помощью выпуклой функции обеспечивает создание менее диверсифицированных и более агрессивных портфелей, а применение вогнутой функции приводит к формированию более диверсифицированных и более консервативных портфелей.


4.5. Многомерная система распределения капитала

4.5.1. Методика применения многомерной системы

Многомерная система распределения капитала внутри портфеля основывается на одновременном использовании нескольких показателей, выражающих оценки доходности и риска. Введение дополнительных показателей может способствовать созданию более сбалансированной системы распределения капитала с точки зрения оптимизации соотношения ожидаемой доходности и прогнозируемых рисков. При использовании многомерной системы появляется дополнительная проблема, не возникавшая при распределении капитала на основе единственного показателя, – необходимость выбора одного портфеля из множества вариантов, каждый из которых может считаться оптимальным. В разделе 4.2.1 мы перечислили основные подходы к решению этой задачи. Здесь мы продемонстрируем применение методики мультипликативной свертки нескольких показателей.

Рассмотрим пример распределения капитала по двум показателям – математическому ожиданию прибыли и VaR. Продемонстрируем расчет мультипликативной свертки этих показателей и вычисление значений весовой функции на основе данных, приведенных в таблице 4.3.2. Поскольку эти два показателя имеют различный масштаб величин, возникает необходимость в нормализации их значений. Существует несколько способов нормализации. Мы воспользуемся формулой, позволяющей привести значения любого показателя к интервалу от нуля до единицы:




В таблице 4.5.1 приведены оригинальные значения показателя EPLN (математическое ожидание прибыли, рассчитанное на основе логнормального распределения) и VaR (взятые из таблицы 4.3.2) и их нормализованные значения, рассчитанные с помощью формулы 4.5.1. Приведем пример расчета нормализованного значения показателя EPLN для акции AAPL. Максимальное и минимальное значения EPLN составляют 0,0191 и 0,0003 соответственно. Поскольку оригинальное значение EPLN для AAPL составляет 0,0099, то, используя формулу 4.5.1, можно рассчитать нормализованное значение, как:

(0,0099 – 0,0003) / (0,0191 – 0,0003) = 0,511.

Поскольку показатель EPLN выражает ожидаемую прибыль, а VaR – убыток, то мультипликативная свертка рассчитывается как отношение EPLN к VaR. В этой связи возникает проблема с нулевыми значениями нормализованных показателей. Разрешить эту проблему можно путем замены нулевых значений значениями, рассчитанными по следующей формуле:



где φ(Сmin + 1

) означает величину показателя со следующим после минимального значением. Например, по показателю EPLN нормализованная функция имеет нулевое значение для акции AA. Используя формулу 4.5.2 и учитывая, что акцией со следующим по величине показателем является V[φ(Сmin + 1) = 0,0007], можем вычислить значение нормализованного показателя для AA: (0,0003/0,0007) × 0,021 = 0,009.

После того как значения показателей нормализованы и значения свертки вычислены, остается рассчитать вес каждой комбинации в составе портфеля. Это делается с помощью формулы 4.3.5 (результаты расчетов представлены в последнем столбце таблицы 4.5.1).

4.5.2. Сравнение многомерной и одномерной системы

В этом разделе мы проанализируем, каким образом использование многомерной системы распределения капитала влияет на параметры формируемого портфеля. Для этого необходимо сравнить прибыли портфелей, сформированных с помощью одномерной системы, с прибылями портфелей, созданных на основе многомерной системы. Такое же сравнение следует провести в отношении меры концентрированности капитала.

Перейти на страницу:

Похожие книги

Строить. Неортодоксальное руководство по созданию вещей, которые стоит делать
Строить. Неортодоксальное руководство по созданию вещей, которые стоит делать

Тони Фаделл возглавлял команды, создавшие iPod, iPhone и Nest Learning Thermostat, и за 30 с лишним лет работы в Кремниевой долине узнал о лидерстве, дизайне, стартапах, Apple, Google, принятии решений, наставничестве, сокрушительных неудачах и невероятных успехах столько, что хватило бы на целую энциклопедию. Тони использует примеры, которые мгновенно захватывают внимание, например, процесс создания самых первых iPod и iPhone. Каждая глава призвана помочь читателю решить проблему, с которой он сталкивается в данный момент - как получить финансирование для своего стартапа, уйти с работы или нет, или просто как вести себя с придурком в соседнем кабинете. Тони прокладывал свой путь к успеху рядом с такими наставниками, как Стив Джобс и Билл Кэмпбелл, иконами Кремниевой долины, которые снова и снова добивались успеха. Но Тони не следует кредо Кремниевой долины, согласно которому для создания чего-то великого необходимо изобретать все с нуля. Его советы нестандартны, потому что они старой закалки. Тони понял, что человеческая природа не меняется. Не нужно изобретать способы руководства и управления - нужно изобретать то, что ты делаешь. Тони Фаделл – американский топ-менеджер. Он создал iPod и iPhone, основал компанию Nest и создал самообучающийся термостат Nest. За свою карьеру Тони стал автором более 300 патентов. Сейчас он возглавляет инвестиционную и консультационную компанию Future Shape, где занимается наставничеством нового поколения стартапов, которые меняют мир.  

Tony Fadell , Тони Фаделл

Финансы / Прочая компьютерная литература / Банковское дело