Читаем От абака к цифровой революции полностью

С другой стороны, в поисках доказательств существования разных систем счисления совершенно не обязательно изучать далекие племена. В индоевропейских языках слово, означающее «восемь», происходит от слова, означающего «четыре», а латинское слово novem, означающее «девять», по-видимому, происходит от novus — «новый», что опять-таки указывает на использование систем счисления с основанием 4 и 8. Остатки двадцатеричной системы счисления прослеживаются в словах языка басков hogei, berrogei, hirurogei и laurogei, которые означают 20, 40, 60 и 80, в буквальном переводе — 20, 2·20, 3·20, 4·20, а также во французском слове «восемьдесят» — quatre-vingt. Аналогично в английском языке, где используется десятичная система счисления, можно заметить артефакты древности: eleven («одиннадцать») и

twelve («двенадцать») происходят от one left — «остался один» и two left — «осталось два» (в том смысле, что они «остались» после 10).

* * *

ПРОИСХОЖДЕНИЕ МАТЕМАТИКИ

Спор о происхождении математики столь же древний, как и сама математика. 06 этой теме много размышляли Геродот и Аристотель. Первый считал, что геометрия возникла в Египте для разделения земель после ежегодных разливов Нила, следовательно, ее появление было вызвано практической необходимостью. Второй, напротив, полагал, что математика была создана жрецами в свободное от богослужений время. По его мнению, математика возникла как умственная деятельность, лишенная практического интереса.



Ежегодные разливы Нила (на фотографии — Нил, протекающий через Луксор) и необходимость восстанавливать границы земельных участков стали причинами возникновения математики, по мнению греческого историка Геродота, жившего в V веке до н. э.

* * *

Может показаться, что большие числа появились лишь недавно, а в античных текстах и записях упоминаются лишь сравнительно малые числа, но это совершенно не так. В Оксфордском университете хранится египетский папирус, возраст которого составляет около 5000 лет, с записью о победе фараона Нармера над ливанцами к западу от дельты Нила. В папирусе указано, что египтяне увели 120000 пленных, 400000 волов и 1422000 коз. Сотни тысяч и миллионы также упоминаются в древнеегипетской «Книге мертвых».



Папирус из «Книги мертвых»— сборника религиозных текстов, в котором упоминаются большие числа.


Хотя числа были известны в большинстве культур (пусть и различных систем счисления), дроби практически нигде не использовались. Египтяне рассматривали исключительно дроби вида 1/n; вавилоняне, которые располагали инструментарием, близким к современному, опирались на шестидесятеричную систему (по основанию 60).

Десятичная система, которая в наше время используется для записи дробей, — современное изобретение. В XVI веке математик Симон Стевин опубликовал небольшой труд, в котором изложил, как следует использовать десятичную систему.

Вычисления и вычислительная техника во все времена развивались параллельно с развитием технологий и систем счисления. Применение папируса оказало непосредственное влияние на исчисление и счет в Древнем Египте: система счисления была изменена так, чтобы ее легко было использовать в расчетах на папирусе.

Римская система счисления, напротив, была очень неудобна при записях на бумаге, поэтому для расчетов в этой системе счисления широко использовался абак.



Страница из книги Симона Стевина De Thiende («Десятая»), опубликованной в 1585 году, в которой предлагается новая система обозначений для записи десятичных чисел.


Вычисления в Вавилонии


Перейти на страницу:

Все книги серии Мир математики

Математики, шпионы и хакеры
Математики, шпионы и хакеры

Если бы историю человечества можно было представить в виде шпионского романа, то главными героями этого произведения, несомненно, стали бы криптографы и криптоаналитики. Первые — специалисты, виртуозно владеющие искусством кодирования сообщений. Вторые — гении взлома и дешифровки, на компьютерном сленге именуемые хакерами. История соперничества криптографов и криптоаналитиков стара как мир.Эволюционируя вместе с развитием высоких технологий, ремесло шифрования достигло в XXI веке самой дальней границы современной науки — квантовой механики. И хотя объектом кодирования обычно является текст, инструментом работы кодировщиков была и остается математика.Эта книга — попытка рассказать читателю историю шифрования через призму развития математической мысли.

Жуан Гомес

Математика / Образование и наука
Когда прямые искривляются
Когда прямые искривляются

Многие из нас слышали о том, что современная наука уже довольно давно поставила под сомнение основные постулаты евклидовой геометрии. Но какие именно теории пришли на смену классической доктрине? На ум приходит разве что популярная теория относительности Эйнштейна. На самом деле таких революционных идей и гипотез гораздо больше. Пространство Минковского, гиперболическая геометрия Лобачевского и Бойяи, эллиптическая геометрия Римана и другие любопытные способы описания окружающего нас мира относятся к группе так называемых неевклидовых геометрий. Каким образом пересекаются параллельные прямые? В каком случае сумма внутренних углов треугольника может составить больше 180°? Ответы на эти и многие другие вопросы вы найдете в данной книге.

Жуан Гомес

Математика / Образование и наука

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Том 22. Сон  разума. Математическая логика и ее парадоксы
Том 22. Сон разума. Математическая логика и ее парадоксы

На пути своего развития математика периодически переживает переломные моменты, и эти кризисы всякий раз вынуждают мыслителей открывать все новые и новые горизонты. Стремление ко все большей степени абстракции и повышению строгости математических рассуждений неминуемо привело к размышлениям об основах самой математики и логических законах, на которые она опирается. Однако именно в логике, как известно еще со времен Зенона Элейского, таятся парадоксы — неразрешимые на первый (и даже на второй) взгляд утверждения, которые, с одной стороны, грозят разрушить многие стройные теории, а с другой — дают толчок их новому осмыслению.Имена Давида Гильберта, Бертрана Рассела, Курта Гёделя, Алана Тьюринга ассоциируются именно с рождением совершенно новых точек зрения на, казалось бы, хорошо изученные явления. Так давайте же повторим удивительный путь, которым прошли эти ученые, выстраивая новый фундамент математики.

Хавьер Фресан

Математика
Математика для любознательных
Математика для любознательных

Эта книга основателя жанра научно-занимательной литературы, российского ученого Я. И. Перельмана объединяет в себе две работы автора: «Занимательная математика» и «Занимательная арифметика». Она ставит целью привить своему читателю вкус к изучению математики, вызвать у него интерес к самостоятельным творческим занятиям и приобщает к миру научных знаний. Книга содержит увлекательные рассказы-задачи с необычными сюжетами на математические темы, любопытными примерами из повседневной жизни, головоломки, шуточные вопросы и опыты - и все это через игру, легко и непринужденно.Постановка задач, их арифметические и логические методы решений и вытекающие из решений выводы вызовут интерес не только у юных начинающих математиков, знакомых лишь с элементами арифметики, но и у хорошо разбирающихся в математике читателей.Авторская стилистика письма соответствует 20-м годам двадцатого века и сохранена без изменений.

Яков Исидорович Перельман

Математика / Образование и наука