Читаем От абака к цифровой революции полностью

ГЕРБЕРТ ОРИЛЬЯКСКИЙ (946-1003)

Будущий папа римский Сильвестр II оставил монастырь Святого Герольда в Орильяке и последовал за графом Барселоны Боррелем II в монастырь Святой Марии в Риполь, где три года изучал математику. Он также совершил путешествия в Кордобу и Севилью, где обучался математике и астрономии у арабов, и убедился в превосходстве применяемой ими системы счисления.

Герберт Орильякский был автором множества трудов по математике и астрономии, посвященных прежде всего квадривиуму, то есть предназначенных для студентов, а не ученых мужей. Его работы включены в том 139 «Латинской патрологии» (Patrologia Latina) — собрания сочинений латиноязычных христианских авторов от

Тертуллиана (160–220) до Иннокентия III (1160–1216). Помимо введения абака Герберт Орильякский также воссоздал армиллярную сферу, чтобы помочь изучающим астрономию.



Статуя папы Сильвестра II во французской префектуре Орильяк.


МУХАММЕД ИБН МУСА АЛЬ-ХОРЕЗМИ (ОК. 783 — ОК. 850)

О жизни Мухаммеда ибн Мусы аль-Хорезми достоверно известно немногое, ведутся споры даже о точном месте его рождения. Математик, астроном и географ аль-Хорезми считается создателем алгебры и современной системы счисления. Он учился, а затем работал в Доме мудрости в Багдаде — научном учреждении, по масштабу сопоставимом с Александрийской библиотекой. В Доме мудрости составлялись и переводились на арабский язык важнейшие научные и философские труды греков и индийцев. Там же располагалась современная обсерватория. Аль-Хорезми был автором множества трудов, многие из которых сыграли фундаментальную роль в развитии науки, а также написал трактат по политической истории. Благодаря широте своих знаний он считается одним из величайших мудрецов древности.



Марка СССР, посвященная Мухаммеду ибн Мусе аль-Хорезми

, выпущенная в 1983 году.

* * *

Распространение арабских цифр


Введение арабских цифр в Европе было медленным и непростым и, разумеется, сопровождалось полемикой. Во Флоренции их использование было запрещено, так как арабские цифры якобы позволяли легко фальсифицировать бухгалтерский баланс. В течение нескольких веков не утихали споры между «абацистами» и «алгоритмистами». В итоге последние одержали победу, но это произошло лишь в середине XVI века.

Перейти на страницу:

Все книги серии Мир математики

Математики, шпионы и хакеры
Математики, шпионы и хакеры

Если бы историю человечества можно было представить в виде шпионского романа, то главными героями этого произведения, несомненно, стали бы криптографы и криптоаналитики. Первые — специалисты, виртуозно владеющие искусством кодирования сообщений. Вторые — гении взлома и дешифровки, на компьютерном сленге именуемые хакерами. История соперничества криптографов и криптоаналитиков стара как мир.Эволюционируя вместе с развитием высоких технологий, ремесло шифрования достигло в XXI веке самой дальней границы современной науки — квантовой механики. И хотя объектом кодирования обычно является текст, инструментом работы кодировщиков была и остается математика.Эта книга — попытка рассказать читателю историю шифрования через призму развития математической мысли.

Жуан Гомес

Математика / Образование и наука
Когда прямые искривляются
Когда прямые искривляются

Многие из нас слышали о том, что современная наука уже довольно давно поставила под сомнение основные постулаты евклидовой геометрии. Но какие именно теории пришли на смену классической доктрине? На ум приходит разве что популярная теория относительности Эйнштейна. На самом деле таких революционных идей и гипотез гораздо больше. Пространство Минковского, гиперболическая геометрия Лобачевского и Бойяи, эллиптическая геометрия Римана и другие любопытные способы описания окружающего нас мира относятся к группе так называемых неевклидовых геометрий. Каким образом пересекаются параллельные прямые? В каком случае сумма внутренних углов треугольника может составить больше 180°? Ответы на эти и многие другие вопросы вы найдете в данной книге.

Жуан Гомес

Математика / Образование и наука

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Математика для любознательных
Математика для любознательных

Эта книга основателя жанра научно-занимательной литературы, российского ученого Я. И. Перельмана объединяет в себе две работы автора: «Занимательная математика» и «Занимательная арифметика». Она ставит целью привить своему читателю вкус к изучению математики, вызвать у него интерес к самостоятельным творческим занятиям и приобщает к миру научных знаний. Книга содержит увлекательные рассказы-задачи с необычными сюжетами на математические темы, любопытными примерами из повседневной жизни, головоломки, шуточные вопросы и опыты - и все это через игру, легко и непринужденно.Постановка задач, их арифметические и логические методы решений и вытекающие из решений выводы вызовут интерес не только у юных начинающих математиков, знакомых лишь с элементами арифметики, но и у хорошо разбирающихся в математике читателей.Авторская стилистика письма соответствует 20-м годам двадцатого века и сохранена без изменений.

Яков Исидорович Перельман

Математика / Образование и наука
Том 22. Сон  разума. Математическая логика и ее парадоксы
Том 22. Сон разума. Математическая логика и ее парадоксы

На пути своего развития математика периодически переживает переломные моменты, и эти кризисы всякий раз вынуждают мыслителей открывать все новые и новые горизонты. Стремление ко все большей степени абстракции и повышению строгости математических рассуждений неминуемо привело к размышлениям об основах самой математики и логических законах, на которые она опирается. Однако именно в логике, как известно еще со времен Зенона Элейского, таятся парадоксы — неразрешимые на первый (и даже на второй) взгляд утверждения, которые, с одной стороны, грозят разрушить многие стройные теории, а с другой — дают толчок их новому осмыслению.Имена Давида Гильберта, Бертрана Рассела, Курта Гёделя, Алана Тьюринга ассоциируются именно с рождением совершенно новых точек зрения на, казалось бы, хорошо изученные явления. Так давайте же повторим удивительный путь, которым прошли эти ученые, выстраивая новый фундамент математики.

Хавьер Фресан

Математика