Читаем От абака к цифровой революции полностью

Портрет Уильяма Отреда, который считается изобретателем логарифмической линейки.


Логарифмические линейки не использовались для сложения и вычитания. Они были более удобны для умножения и деления и применялись преимущественно для выполнения именно этих операций. Более поздние версии позволяли вычислять значения корней, тригонометрических функций, степеней и логарифмов. Однако следует заметить, что точность логарифмической линейки была ограниченной: как правило, использовались три значащие цифры. Однако с помощью более точных линеек, имевших больший размер, достигалась более высокая точность. Требовалось обращать внимание на порядки величин, так как при использовании логарифмической линейки они не учитывались. Логарифмические линейки применялись в качестве средства научных расчетов до 1970-х годов, пока их не вытеснили карманные электронные калькуляторы.



Модель логарифмической линейки 1960-х годов. Этим вычислительным устройствам вскоре пришли на смену калькуляторы.


Первые калькуляторы

Первый электронный карманный калькулятор появился в 1972 году. Это была знаменитая модель Hewlett-Packard НР-35

. Пока что мы рассказывали об эволюции исчисления и средствах его автоматизации, то есть о развитии теоретической базы, на основе которой в итоге был создан карманный калькулятор и впоследствии множество других устройств, без которых мы не можем сегодня представить нашу жизнь.

Однако эта теория принесла первые плоды не в XX веке, а намного раньше. Первый калькулятор в истории был создан еще в XVII веке. Его изобретение стало логичным продолжением развития механических вычислительных устройств, о которых мы только что рассказали. Это устройство, получившее название «часы для счета», создал Вильгельм Шиккард (1592–1635) в Тюбингене в 1623 году.



Немецкая марка с изображением «часов для счета» Вильгельма Шиккарда.


С помощью первого в мире калькулятора можно было выполнять четыре основных арифметических действия. Сложение и вычитание выполнялись полностью механически, в отличие от умножения и деления: в этом случае оператору приходилось выполнять промежуточные действия самому. Детали машины напоминали палочки Непера, перенос значений в старший разряд осуществлялся механически при помощи зубчатых колес: когда колесо, соответствовавшее единицам, совершало полный оборот, колесо, обозначавшее десятки, сдвигалось на одно деление. Подобные механизмы использовались в Европе как минимум с XVI века при создании шагомеров, служивших для измерения пройденного пути. Древнейший из известных нам шагомеров был создан французом Жаном Фернелем в 1525 году.

Калькулятор Шиккарда не оказал большого влияния на вычисления: его изобретатель стал жертвой одной из эпидемий, бушевавших в Европе в те годы. Изобретение затерялось и было вновь найдено лишь в XX веке. О нем стало известно из переписки Шиккарда с Иоганном Кеплером, с которым тот сотрудничал. В своих письмах он приводит многочисленные эскизы своего изобретения. Благодаря им стало возможным воссоздать машину и убедиться, что она действительно работала. В одном из писем Кеплер подтверждает, что попросил экземпляр калькулятора у своего друга и коллеги Шиккарда.

«Паскалина», калькулятор, изобретенный Блезом Паскалем, стал первой широко известной вычислительной машиной. Этот гениальный философ и математик представил свое изобретение публике в 1642 году, когда ему было всего 19 лет. Созданная Паскалем машина была схожа с изобретением Вильгельма Шиккарда: когда колесо, соответствовавшее меньшему разряду, совершало полный оборот, колесо, соответствовавшее следующему разряду, поворачивалось на одно деление. К сожалению, подобное устройство было источником различных проблем, поскольку зубчатые колеса не всегда сцеплялись правильно.



«Паскалина», изобретенная Блезом Паскалем.


Было доказано, что Паскаль создал свою машину независимо от Вильгельма Шиккарда. «Паскалина» была проще, и с ее помощью можно было выполнять только сложение и вычитание. Первая версия работала с пятизначными числами (машина Шиккарда с шестизначными), в последующих версиях число разрядов было увеличено. Некоторые калькуляторы поступили в продажу, но их высокая цена отпугнула покупателей и не принесла семье Паскаля существенной прибыли. «Паскалина» стала всего лишь игрушкой, символом статуса для зажиточных людей Франции и других стран Европы. Паскаль в течение 10 лет улучшал свое изобретение и создал 50 различных версий.

Перейти на страницу:

Все книги серии Мир математики

Математики, шпионы и хакеры
Математики, шпионы и хакеры

Если бы историю человечества можно было представить в виде шпионского романа, то главными героями этого произведения, несомненно, стали бы криптографы и криптоаналитики. Первые — специалисты, виртуозно владеющие искусством кодирования сообщений. Вторые — гении взлома и дешифровки, на компьютерном сленге именуемые хакерами. История соперничества криптографов и криптоаналитиков стара как мир.Эволюционируя вместе с развитием высоких технологий, ремесло шифрования достигло в XXI веке самой дальней границы современной науки — квантовой механики. И хотя объектом кодирования обычно является текст, инструментом работы кодировщиков была и остается математика.Эта книга — попытка рассказать читателю историю шифрования через призму развития математической мысли.

Жуан Гомес

Математика / Образование и наука
Когда прямые искривляются
Когда прямые искривляются

Многие из нас слышали о том, что современная наука уже довольно давно поставила под сомнение основные постулаты евклидовой геометрии. Но какие именно теории пришли на смену классической доктрине? На ум приходит разве что популярная теория относительности Эйнштейна. На самом деле таких революционных идей и гипотез гораздо больше. Пространство Минковского, гиперболическая геометрия Лобачевского и Бойяи, эллиптическая геометрия Римана и другие любопытные способы описания окружающего нас мира относятся к группе так называемых неевклидовых геометрий. Каким образом пересекаются параллельные прямые? В каком случае сумма внутренних углов треугольника может составить больше 180°? Ответы на эти и многие другие вопросы вы найдете в данной книге.

Жуан Гомес

Математика / Образование и наука

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Математика для любознательных
Математика для любознательных

Эта книга основателя жанра научно-занимательной литературы, российского ученого Я. И. Перельмана объединяет в себе две работы автора: «Занимательная математика» и «Занимательная арифметика». Она ставит целью привить своему читателю вкус к изучению математики, вызвать у него интерес к самостоятельным творческим занятиям и приобщает к миру научных знаний. Книга содержит увлекательные рассказы-задачи с необычными сюжетами на математические темы, любопытными примерами из повседневной жизни, головоломки, шуточные вопросы и опыты - и все это через игру, легко и непринужденно.Постановка задач, их арифметические и логические методы решений и вытекающие из решений выводы вызовут интерес не только у юных начинающих математиков, знакомых лишь с элементами арифметики, но и у хорошо разбирающихся в математике читателей.Авторская стилистика письма соответствует 20-м годам двадцатого века и сохранена без изменений.

Яков Исидорович Перельман

Математика / Образование и наука
Том 22. Сон  разума. Математическая логика и ее парадоксы
Том 22. Сон разума. Математическая логика и ее парадоксы

На пути своего развития математика периодически переживает переломные моменты, и эти кризисы всякий раз вынуждают мыслителей открывать все новые и новые горизонты. Стремление ко все большей степени абстракции и повышению строгости математических рассуждений неминуемо привело к размышлениям об основах самой математики и логических законах, на которые она опирается. Однако именно в логике, как известно еще со времен Зенона Элейского, таятся парадоксы — неразрешимые на первый (и даже на второй) взгляд утверждения, которые, с одной стороны, грозят разрушить многие стройные теории, а с другой — дают толчок их новому осмыслению.Имена Давида Гильберта, Бертрана Рассела, Курта Гёделя, Алана Тьюринга ассоциируются именно с рождением совершенно новых точек зрения на, казалось бы, хорошо изученные явления. Так давайте же повторим удивительный путь, которым прошли эти ученые, выстраивая новый фундамент математики.

Хавьер Фресан

Математика