Читаем От абака к цифровой революции полностью

Вычисления в Древнем Египте


В древнеегипетской системе счисления для степеней десяти использовались отдельные символы. Так, существовали особые символы для единиц, десятков, сотен и так далее.

Египетская система счисления, в отличие от вавилонской, не была позиционной. Далее мы продемонстрируем иероглифы, соответствующие наиболее часто используемым числам.



Египетская система счисления была аддитивной, в отличие от нашей системы счисления, которая, подобно вавилонской, является позиционной. В аддитивной системе счисления, например, число 3204 представляется в виде 1000 + 1000 + 1000 + 100 + 100 + 1 + 1 + 1 + 1. В виде египетских иероглифов оно записывается так:



С помощью этой системы можно было записывать большие числа. Кроме того, упрощались операции сложения и вычитания. При сложении чисел значения «переносились» в старший разряд, при вычитании — «забирались» из старших разрядов. Умножение сводилось к сложению и вычитанию интересным, но непростым способом.

Рассмотрим, как выполнялось умножение, на примере чисел 17 и 53. Нужно взять пару чисел 1 и 53 и удвоить их. Результатом удвоения будут числа 2 и 106. Повторив эту операцию, получим 4 и 212. Нужно удваивать числа до тех пор, пока первое из них не превысит 17. После этого процесс прекращается, а результат, полученный на последнем шаге, игнорируется. Результатом этих действий в нашем примере будут следующие пары чисел.



Теперь нужно определить, как можно получить 17 путем сложения чисел из первого столбца. Единственный возможный способ получить 17 — сложить 1 и 16. Следовательно, для получения результата умножения нужно сложить значения, записанные справа от 1 и 16, то есть 53 и 848. Их сумма равна 901. Таким образом, результат умножения 17 на 53 равен 901.



Можно заметить, что число 17 рассматривается как сумма степеней двойки, а те, в свою очередь, умножаются на 53. Так, разложение числа 17 выглядит следующим образом: 17 = 20

+ 24. При сложении в качестве слагаемых выбираются значения (2 + 24)·53, остальные произведения, 21·53, 22·53 и 23·53, не используются, так как не входят в разложение числа 17. Этот алгоритм аналогичен тому, что используется в компьютерах. Результат этого алгоритма верен, поскольку представить любое число в виде суммы степеней двойки можно единственным образом. Следовательно, в нашем примере существует единственное множество значений, сумма которых равна 17. Поэтому значения из правого столбца таблицы, которые мы складываем, также можно выбрать только одним способом. Этот метод умножения известен под названием египетского умножения.

Деление выполнялось как операция, обратная умножению. В качестве примера приведем те же числа. Попробуем разделить 901 на 17. Результат должен равняться 53. Результатом деления является целое число без знаков после запятой.

В качестве исходных берется знаменатель 17 и 1. Далее аналогично прошлому примеру оба эти числа удваиваются. Результатом будет 34 и 2. Далее это действие повторяется, результат будет равен 68 и 4. Эти действия повторяются до тех пор, пока первое значение не станет больше числителя, который в нашем примере равен 901. Когда первое значение становится больше числителя (901), полученная пара чисел игнорируется. Результат алгоритма приведен ниже.


Следующая пара чисел — 1088 и 64 — отбрасывается, так как первое число больше 901. Далее нужно подобрать такие числа из первого столбца, чтобы их сумма равнялась 901. В нашем примере это 544, 272, 68 и 17 (так как 544 + 272 + 68 + 17 = 901). Сумма соответствующих им чисел из правого столбца и будет результатом деления. Результат равен 32 + 16 + 4 + 1 = 53.


Как и в случае с умножением, разложение числа 901 является единственным. Мы представили 901 как сумму степеней двойки, умноженных на 17, при этом сумма этих степеней двойки равна 53. Результатом деления в этом случае является целое число. В случаях когда это невозможно и результат содержит несколько знаков после запятой, в этом алгоритме учитываются дроби. Однако алгоритм работы с дробями, который использовали египтяне, был намного сложнее современного. За некоторыми исключениями, рассматривались только дроби вида 1/n, то есть дроби, числитель которых равен 1. Любопытно, что причиной этому было ограничение, вызванное способом записи дроби: сначала записывался символ для обозначения дроби, затем — символы, соответствующие числу в знаменателе. Информация о числителе не записывалась, поэтому он мог равняться только единице.

Для обозначения дроби египтяне использовали этот символ:



Рядом с ним записывался знаменатель, в нашем примере это 21:



Так египтяне записывали дробь 1/21.

Мы упомянули, что существовали дроби с числителем, отличным от 1. Речь идет о дроби 2/3, которая обозначалась отдельным символом, и о дроби вида n/(n + 1), обратной дроби (1 + 1/n). Иными словами, 1/(1 + 1/n) = 1/((n + 1)/n) = n/(n + 1).

Перейти на страницу:

Все книги серии Мир математики

Математики, шпионы и хакеры
Математики, шпионы и хакеры

Если бы историю человечества можно было представить в виде шпионского романа, то главными героями этого произведения, несомненно, стали бы криптографы и криптоаналитики. Первые — специалисты, виртуозно владеющие искусством кодирования сообщений. Вторые — гении взлома и дешифровки, на компьютерном сленге именуемые хакерами. История соперничества криптографов и криптоаналитиков стара как мир.Эволюционируя вместе с развитием высоких технологий, ремесло шифрования достигло в XXI веке самой дальней границы современной науки — квантовой механики. И хотя объектом кодирования обычно является текст, инструментом работы кодировщиков была и остается математика.Эта книга — попытка рассказать читателю историю шифрования через призму развития математической мысли.

Жуан Гомес

Математика / Образование и наука
Когда прямые искривляются
Когда прямые искривляются

Многие из нас слышали о том, что современная наука уже довольно давно поставила под сомнение основные постулаты евклидовой геометрии. Но какие именно теории пришли на смену классической доктрине? На ум приходит разве что популярная теория относительности Эйнштейна. На самом деле таких революционных идей и гипотез гораздо больше. Пространство Минковского, гиперболическая геометрия Лобачевского и Бойяи, эллиптическая геометрия Римана и другие любопытные способы описания окружающего нас мира относятся к группе так называемых неевклидовых геометрий. Каким образом пересекаются параллельные прямые? В каком случае сумма внутренних углов треугольника может составить больше 180°? Ответы на эти и многие другие вопросы вы найдете в данной книге.

Жуан Гомес

Математика / Образование и наука

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Том 22. Сон  разума. Математическая логика и ее парадоксы
Том 22. Сон разума. Математическая логика и ее парадоксы

На пути своего развития математика периодически переживает переломные моменты, и эти кризисы всякий раз вынуждают мыслителей открывать все новые и новые горизонты. Стремление ко все большей степени абстракции и повышению строгости математических рассуждений неминуемо привело к размышлениям об основах самой математики и логических законах, на которые она опирается. Однако именно в логике, как известно еще со времен Зенона Элейского, таятся парадоксы — неразрешимые на первый (и даже на второй) взгляд утверждения, которые, с одной стороны, грозят разрушить многие стройные теории, а с другой — дают толчок их новому осмыслению.Имена Давида Гильберта, Бертрана Рассела, Курта Гёделя, Алана Тьюринга ассоциируются именно с рождением совершенно новых точек зрения на, казалось бы, хорошо изученные явления. Так давайте же повторим удивительный путь, которым прошли эти ученые, выстраивая новый фундамент математики.

Хавьер Фресан

Математика
Математика для любознательных
Математика для любознательных

Эта книга основателя жанра научно-занимательной литературы, российского ученого Я. И. Перельмана объединяет в себе две работы автора: «Занимательная математика» и «Занимательная арифметика». Она ставит целью привить своему читателю вкус к изучению математики, вызвать у него интерес к самостоятельным творческим занятиям и приобщает к миру научных знаний. Книга содержит увлекательные рассказы-задачи с необычными сюжетами на математические темы, любопытными примерами из повседневной жизни, головоломки, шуточные вопросы и опыты - и все это через игру, легко и непринужденно.Постановка задач, их арифметические и логические методы решений и вытекающие из решений выводы вызовут интерес не только у юных начинающих математиков, знакомых лишь с элементами арифметики, но и у хорошо разбирающихся в математике читателей.Авторская стилистика письма соответствует 20-м годам двадцатого века и сохранена без изменений.

Яков Исидорович Перельман

Математика / Образование и наука