Читаем Пятьдесят занимательных вероятностных задач с решениями полностью

    1432* 2431* 3421* 4321    

Кажется разумным пропустить первый билет и остановиться на следующем наибольшем номере, если он есть. Назовем этот план стратегия 1. Звездочки в нашем списке указывают на случай выигрыша этой стратегии. Вероятность правильного решения равна здесь 11/24, что гораздо лучше, чем случайное решение с вероятностью выигрыша 1/4.

Стратегия 2 пропускает первые два номера и затем выбирает первый номер, их превосходящий. 10 перестановок, в которых эта стратегия дает выигрыш, отмечены крестиком. Видно, что стратегия 1 выигрывает чаще.

Если продолжать изучение всех возможных случаев их перечислением, то задача приобретает зловещий вид, так как уже для восьми билетов число перестановок есть 40320. Далее, могут существовать хорошие стратегии, которые мы упустим из виду, хотя это кажется невероятным. Будем надеяться, что математика сможет нам помочь.

Следует подчеркнуть, что мудрец ничего не знает о распределении номеров. Чтобы удостовериться в этом, король может сам вытаскивать билеты и сообщать мудрецу их номера среди уже появившихся. Только билет с наибольшим приданым среди вытянутых заслуживает внимания; назовем такое максимальным.

Покажем теперь, что оптимальная стратегия — пропустить s − 1 билетов и выбрать первый максимальный номер после них. Мы выберем максимальное приданое на i-м шагу, если вероятность того, что оно наибольшее среди всех имеющихся, превосходит вероятность правильного решения при оптимальной стратегии и более позднем вытягивании. Формально: остановимся на максимальном номере при i-м вытягивании, если

Р (выиграть при i-м вытягивании) > Р (выиграть при оптимальной стратегии, начиная с i + 1 вытягивания).   (1)

Покажем, что вероятность в правой части (1) убывает, когда i возрастает, а вероятность в левой части (1) возрастает с возрастанием i, и потому существует выбор шага i, после которого предпочтительнее удержать максимальное приданое, нежели продолжать испытания. Вычисляя затем вероятность выигрыша для такой стратегии, найдем оптимальный выбор значения s.

После нескольких первых ходов в этой игре мы можем еще прибегнуть ко всем стратегиям, определяемым последующими вытаскиваниями, так как мы всегда можем пропустить часть билетов, пока не достигнем нужного нам числа билетов. Следовательно, вероятность в правой части неравенства (1) не возрастает с ростом i. При i = 0 это искомая оптимальная вероятность, а при i = n − 1 эта вероятность равна 1/n как вероятность выигрыша при выборе на последнем шагу.

Вероятность того, что на i-м шагу максимальное приданое больше всех имеющихся, равна вероятности того, что наилучший номер находится на одном из первых i

билетов, а именно, равна i/n, что является строго возрастающей от 1/n до 1 функцией от i. Поэтому значение i/n в какой-то точке превосходит вероятность выигрыша при продолжении испытаний. Таким образом, оптимальная стратегия может быть задана следующим правилом: пропустить s − 1 первых номеров и выбрать затем первого лидера, т. е. первый номер, который больше всех предыдущих. Сосчитаем вероятность выигрыша для такой стратегии. Вероятность правильного решения есть вероятность появления ровно одного лидера между s-м шагом и n-м. Вероятность того, что наилучший билет появился на k-м шагу, равна 1/n. Вероятность того, что максимум первых k − 1 номеров появился среди первых s − 1 номеров, есть (s − 1)/(k − 1). Произведение (s − 1)/[n·(k − 1)] дает вероятность того, что мы выиграем при выборе k, skn. Суммируя эти числа, получим вероятность π(s
, n) получения наилучшего приданого при оптимальной стратегии

          (2)

Так как первое вытаскивание всегда дает максимальный номер, то π(1, n) = 1/n. Заметим, что при n = 4, s = 2 имеем π(1, n) = 11/24, как и в нашем примере.

Оптимальное значение s, скажем, s*, есть минимальное s, для которого имеет место неравенство (1), т. е. это наименьшее s, для которого

          (3)

или, что равносильно, такое s, для которого

          (4)

Оптимальное значение s и вероятности выигрыша для задачи о приданных

nsπ(s, n)nsπ(s, n)
111.0001040.399
210.5002080.384
320.50050190.374
420.458100380.371
530.433n/e1/e ≈ 0.368

Эта таблица дает оптимальные значения s и соответствующие им вероятности правильного решения для небольших значений n. Для n = 100 следует пропустить 37 приданных и выбрать после этого первое максимальное.

Большие значения n

Для больших значений n мы можем аппроксимировать сумму выражением ln(n) + C, где С — постоянная Эйлера. Используя это приближение в формуле (2) для больших s и n, получаем

          (5)

Аналогично приближения для правой и левой частей неравенства (4) показывают, что ln(n/s) ≈ 1, и, значит, sn/e. Подставляя эти результаты в (5), находим

Перейти на страницу:

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Прикладные аспекты аварийных выбросов в атмосферу
Прикладные аспекты аварийных выбросов в атмосферу

Книга посвящена проблемам загрязнения окружающей среды при авариях промышленных предприятий и объектов разного профиля и имеет, в основном, обзорный справочный характер.Изучается динамика аварийных турбулентных выбросов при наличии атмосферной диффузии, характер расширения турбулентных струйных потоков, их сопротивление в сносящем ветре, эволюция выбросов в реальной атмосфере при наличии инверсионных задерживающих слоев.Классифицируются и анализируются возможные аварии с выбросами в атмосферу загрязняющих и токсичных веществ в газообразной, жидкой или твердой фазах, приводятся факторы аварийных рисков.Рассмотрены аварии, связанные с выбросами токсикантов в атмосферу, описаны математические модели аварийных выбросов. Показано, что все многообразие антропогенных источников загрязнения атмосферного воздуха при авариях условно может быть разбито на отдельные классы по типу возникших выбросов и характеру движения их вещества. В качестве источников загрязнений рассмотрены пожары, взрывы и токсичные выбросы. Эти источники в зависимости от специфики подачи рабочего тела в окружающее пространство формируют атмосферные выбросы в виде выпадающих на поверхность земли твердых или жидких частиц, струй, терминов и клубов, разлитий, испарительных объемов и тепловых колонок. Рассмотрены экологические опасности выбросов при авариях и в быту.Книга содержит большой иллюстративный материал в виде таблиц, графиков, рисунков и фотографий, который помогает читателю разобраться в обсуждаемых вопросах. Она адресована широкому кругу людей, чей род деятельности связан преимущественно с природоохранной тематикой: инженерам, научным работникам, учащимся и всем тем, кто интересуется экологической и природозащитной тематикой.

Вадим Иванович Романов

Математика / Экология / Прочая справочная литература / Образование и наука / Словари и Энциклопедии