Читаем Пятьдесят занимательных вероятностных задач с решениями полностью

Поскольку в данной игре больше информации, чем в игре из предыдущей задачи, то шансы на выигрыш также больше. Если число билетов равно 2, то игроку следует выбрать первое число, если оно больше 1/2, а в противном случае избрать второе. Вероятность правильного решения в этом случае равна 3/4. Увеличение числа билетов от 1 до 2 значительно уменьшило вероятность выигрыша. Некоторые геометрические соображения, которые мы не будем здесь приводить, показывают, что для n = 3 вероятность правильного выбора равна приблизительно 0.684. Для больших n эта вероятность равняется приближенно 0.580.

49. Решение задачи об удвоении точности

Да. Пусть A — длина длинного стержня, а B — длина короткого. Можно положить эти стержни рядом и измерить разность длин AB, а затем приложить их один к другому и измерить сумму длин A + B. Пусть D и S обозначают наблюденные длины AB и A + B соответственно. Тогда оценка для A есть 1/2(

S + D) и оценка для B есть 1/2(SD). Далее, D = AB + d, S = A + B + s, где d и s — случайные ошибки. Следовательно,

В среднем ошибка 1/2(d + s

) будет нулевой, поскольку d и s имеют средние нуль. Дисперсия оценки A есть дисперсия

Это значение совпадает со значением для дисперсии среднего двух независимых наблюдении. Таким образом, оба наблюдения внесли полный вклад в измерение A. Точно так же дисперсия оценки B равняется σ²/4. Следовательно, делая два измерения — одно для разности, другое для суммы — мы получаем оценки, точность которых равна точности при четырех рениях, по два на каждый стержень в отдельности.

Для получения столь хороших результатов мы должны как можно точнее соединить концы стержней. Если этого сделать нельзя, то можно считать, что в результаты измерений входит ошибка, связанная с неидеальным совпадением концов стержня. Если эта случайная ошибка имеет штандарт σ√2, то одному измерению суммы или разности отвечает штандарт σ√3/√2, и дисперсия нашей оценки A будет равна

При этих предположениях наша точность будет точно такой же, как и точность при 4/3 независимых измерениях вместо 2, но все же больше точности одного прямого измерения.

Мы можем обосновать предположение о том, что ошибка от неточного совпадения концов имеет штандарт σ/√2, следующим образом. Представим себе s (или d) как сумму двух независимых ошибок измерения, каждую с дисперсией σ²/2. Тогда сумма слагаемых ошибок имеет дисперсию, которую мы считали

равной σ². Если мы припишем дисперсию σ²/2 и третьему слагаемому, то такая модель будет согласовываться с исходной.

50. Решение задачи о квадратных уравнениях со случайными коэффициентами

Для того чтобы вопрос задачи имел смысл, предположим, что точка (b, c) равномерно распределена на квадрате с центром в начале координат и стороной 2B (рис. 22). Решим задачу при фиксированном B, а затем устремим B к бесконечности, так что

b и c могут принимать любые значения.

Рис. 22. Серая область отвечает случаю вещественных корней.

Для того чтобы уравнение имело вещественные корни, необходимо и достаточно, чтобы

b² − c ≥ 0.

На приведенном рисунке изображена парабола b² = c и показана область, где наше уравнение имеет вещественные корни для B = 4.

Нетрудно подсчитать, что площадь незаштрихованной области равна 4/3∙B3/2 (при B ≥ 1), а площадь всего квадрата, конечно, равна 4B². Следовательно, вероятность того, что корни комплексные, равна 1/3∙√B. При B = 4 ответ равен 1/6. С ростом B 1/√B

стремится к нулю, так что вероятность того, что корни вещественные, стремится к 1.

Следует заметить, что эта задача отличается от такой же задачи, связанной с уравнением ax² + 2bx + c = 0. Конечно, можно разделить на a, но если a, b и c были независимы и равномерно распределены в некотором кубе, то b/a и c/a уже зависимы и распределены неравномерно.

51. Решение вадачи о двумерном случайном блуждании

В одномерном случайном блуждании (см. задачу 35 «На краю утеса», последняя часть решения) мы нашли, что вероятность возвращения частицы в начало есть l, если вероятности шагов налево и направо одинаковы. Но положение дел все же весьма деликатно сбалансировано. Если бы одна из вероятностей отличалась от 1/2, то частица удалилась бы в бесконечность. В случае двух измерений можно предположить, что у частицы больше возможностей для ухода в бесконечность. Выясним, так ли это. Мы постараемся найти среднее число возвращений частицы в начало и отсюда определить значение вероятности возвращения частицы. Прежде всего, сколько раз частица вернется в начало? Если P есть вероятность возвращения, то 1 − P = Q есть вероятность того, что возвращения не будет. Тогда вероятность ровно x возвращений есть PxQ, так как после каждого возвращения частицу можно рассматривать как снова выходящую из начала. Если бы P было известно, то среднее число возвращений в начало координат можно было бы найти, суммируя геометрический ряд вида

Перейти на страницу:

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Прикладные аспекты аварийных выбросов в атмосферу
Прикладные аспекты аварийных выбросов в атмосферу

Книга посвящена проблемам загрязнения окружающей среды при авариях промышленных предприятий и объектов разного профиля и имеет, в основном, обзорный справочный характер.Изучается динамика аварийных турбулентных выбросов при наличии атмосферной диффузии, характер расширения турбулентных струйных потоков, их сопротивление в сносящем ветре, эволюция выбросов в реальной атмосфере при наличии инверсионных задерживающих слоев.Классифицируются и анализируются возможные аварии с выбросами в атмосферу загрязняющих и токсичных веществ в газообразной, жидкой или твердой фазах, приводятся факторы аварийных рисков.Рассмотрены аварии, связанные с выбросами токсикантов в атмосферу, описаны математические модели аварийных выбросов. Показано, что все многообразие антропогенных источников загрязнения атмосферного воздуха при авариях условно может быть разбито на отдельные классы по типу возникших выбросов и характеру движения их вещества. В качестве источников загрязнений рассмотрены пожары, взрывы и токсичные выбросы. Эти источники в зависимости от специфики подачи рабочего тела в окружающее пространство формируют атмосферные выбросы в виде выпадающих на поверхность земли твердых или жидких частиц, струй, терминов и клубов, разлитий, испарительных объемов и тепловых колонок. Рассмотрены экологические опасности выбросов при авариях и в быту.Книга содержит большой иллюстративный материал в виде таблиц, графиков, рисунков и фотографий, который помогает читателю разобраться в обсуждаемых вопросах. Она адресована широкому кругу людей, чей род деятельности связан преимущественно с природоохранной тематикой: инженерам, научным работникам, учащимся и всем тем, кто интересуется экологической и природозащитной тематикой.

Вадим Иванович Романов

Математика / Экология / Прочая справочная литература / Образование и наука / Словари и Энциклопедии