Мы постоянно употребляем слова «вероятно», «вероятнее всего», «по всей вероятности», «невероятно», не отдавая себе отчёта, насколько строго определены понятия, им соответствующие. В науке такое положение недопустимо, поэтому там понятие «вероятность» имеет смысл лишь в том случае, если мы можем её вычислить.
Это не всегда возможно. Например, нельзя предсказать вероятность случайной встречи с вашим случайным знакомым в 6 часов вечера 23 октября 1975 года на Главпочтамте города Липецка, хотя заведомо ясно, что эта вероятность не равна нулю. Но поступки людей не случайны, и применять к ним теорию вероятностей нельзя. Поэтому во всех учебниках с завидным постоянством объясняют законы случая на примере бросания монеты.
ИГРА В «ОРЁЛ-РЕШКУ»
Прежде всего заметим: если событие имеет несколько исходов, то полная вероятность произойти хоть какому-то из них равна
Отсюда ясно также, что вероятность какого-то одного исхода всегда меньше единицы. В примере с монетой
Столь же легко вычислить вероятность выпадания, скажем, 3 очков при бросании игральной кости: очевидно, она равна 1/6.
Число аналогичных примеров каждый легко умножит сам, но все они очень похожи.
Во-первых, каждое последующее событие (бросание монеты) не зависит от предыдущего.
Во-вторых, они строго случайны, то есть мы не знаем (или не можем учесть) всех причин, которые приводят к тому или иному исходу события.
Последнее особенно важно. В самом деле, монета не атом, и её движение подчиняется хорошо известным законам классической механики. Используя их, мы бы могли заранее предвидеть все детали движения монеты и предсказать, как она упадёт: гербом вверх или вниз. Нам под силу даже нарисовать её
Однако учесть все мыслимые факторы, влияющие на исход событий, не всегда возможно. Например, в случае с монетой мы никогда не знаем достаточно точно её начального положения и скорости. А всякое, даже очень небольшое, их нарушение может изменить результат бросания на противоположный. И тогда уже нельзя быть уверенным, что при этом бросании монета упадёт гербом вверх. Можно только сказать:
Простые примеры, которые мы привели, не объясняют пока, почему так важно понятие вероятности в квантовой механике. Но прежде чем объяснить это, познакомимся хотя бы бегло с основными законами теории вероятностей. Законы случая (несмотря на странное сочетание двух этих слов) такие же строгие, как и всякие другие законы математики. Однако они имеют некоторые непривычные особенности и вполне определённую область применимости.
Например, хотя мы и знаем, что вероятность выпадания герба при бросании монеты равна 1/2 , однако предсказать исход одного отдельно взятого бросания мы не в состоянии. Тем не менее мы легко можем проверить, что при большом числе бросаний герб выпадет примерно в половине случаев, и закон этот выполняется тем точнее, чем больше испытаний мы проведём. В этом и состоит главная особенность закона случайных событий: понятие вероятности применимо к
Очень важно, чтобы события были однотипными, то есть полностью неразличимыми, поскольку только тогда измеренное число — вероятность — можно использовать для оценки каждого отдельного события.
Непривычные особенности законов случая имеют естественное объяснение. В самом деле, бросание монеты — очень непростой процесс. Мы не хотим или не умеем изучать его во всей сложности. Поэтому мы намеренно закрываем глаза на всю его сложность, отказываемся следить за траекторией монеты и хотим знать только конечный результат испытания. Такое пренебрежение к деталям процесса не проходит даром — теперь мы можем