Прежде чем ответить на эти вопросы, поставим опыт с пучком электронов немного по-другому. Станем выпускать электроны по одному (как пули из винтовки) и каждый раз менять фотопластинку за фольгой. После проявления всех фотопластинок мы обнаружим на каждой из них точку — след от упавшего электрона. (Уже один этот факт, если бы не было других доказательств, легко убеждает нас в том, что электрон — всё-таки частица.) На первый взгляд чёрные точки на пластинках расположены совершенно беспорядочно, и, конечно, ни одна из точек ничем не напоминает дифракционную картину. Но если мы сложим все пластинки в одну стопку и посмотрим её на просвет, то с удивлением обнаружим всё те же дифракционные кольца. Стало быть, чёрные следы от электронов расположены на пластинках не так уж беспорядочно, как может показаться вначале.
Этот простой опыт настолько прост, что может даже обидеть некоторых читателей своей тривиальностью. Однако в своё время именно он убедил последних противников квантовой механики. Конечно, вовсе не обязательно для каждого электрона брать отдельную пластинку, вполне достаточно одной пластинки-мишени, только по-прежнему надо пускать электроны-пули поодиночке.
Как и прежде, мы не можем заранее предсказать, в какую точку пластинки попадёт каждый следующий электрон. Это
С такими явлениями мы уже сталкивались при игре в «орёл-решку», при бросании кости, при стрельбе в тире. Отмеченная аналогия приводит к естественному предположению: процесс рассеяния электронов подчиняется законам теории вероятностей. При дальнейшем размышлении и после знакомства с идеями Макса Борна эта догадка сменяется уверенностью.
ВОЛНЫ ВЕРОЯТНОСТИ
Макс Борн (1882–1970) преподавал физику в признанном центре немецкой науки — в Гёттингене. Он пристально следил за развитием теории атома и был одним из первых, кто придал квантовым идеям Гейзенберга строгую математическую форму. В начале 1927 года он заинтересовался опытами по дифракции электронов.
Само по себе это явление после работ де Бройля уже не казалось удивительным. Любой физик, взглянув на дифракционную картину, мог бы теперь объяснить её появление с помощью гипотезы о «волнах материи». Более того, по формуле де Бройля
=h/m•v он мог вычислить длину этих «волн материи» и на опыте убедиться в правильности своих вычислений. Однако по-прежнему никто не мог объяснить, что он разумеет под словами «волны материи». Пульсацию электрона-шарика? Колебания какого-то эфира? Или вибрацию чего-либо ещё более гипотетического? То есть насколькоЛетом 1927 года Макс Борн предположил:
Всякая новая и глубокая идея не имеет логических оснований, хотя нестрогие аналогии, которые к ней привели, можно проследить почти всегда. Поэтому вместо того чтобы доказывать правоту Борна (это невозможно), попытаемся почувствовать естественность его гипотезы. Обратимся снова к игре в «орёл-решку» и вспомним причины, которые вынудили нас тогда применить теорию вероятностей. Их три:
полная независимость отдельных бросаний монеты;
полная неразличимость отдельных бросаний;
случайность исхода каждого отдельного бросания, которая проистекает от полного незнания начальных условий каждого опыта, то есть от неопределённости начальной координаты и импульса монеты.
электроны ведь всё-таки
кроме того, электроны так бедны свойствами (заряд, масса, спин — и всё), что в квантовой механике они неразличимы, а вместе с тем неразличимы и отдельные акты рассеяния;
и наконец, начальные значения координат и импульсов электронов нельзя определить