Читаем Популярно о конечной математике и ее интересных применениях в квантовой теории полностью

1) Студент решает уравнения Шредингера, находит уровни энергии и чувствует себя хорошо. Этот этап длится примерно полгода.

2) Начинает думать какой смысл всего этого и мучается, что не может понять. Этот этап тоже длится примерно полгода.

3) В одно прекрасное утро он просыпается и удивляется зачем он мучился т.к. все ясно и никаких проблем нет. Объяснение такое, что он пытался понять квантовую теорию с точки зрения классической, а это невозможно. Но постепенно у него выработалось квантовое мышление.


Мне кажется, что это наблюдение относится не только к студентам, но и ко многим ученым, которые формально считаются квантовыми физиками. Когда читаю тысячи статей по квантовой теории, то впечатление такое, что у многих авторов даже второго этапа не было.

Один из примеров – современные теории большого взрыва (Big Bang). Здесь задача заключается в том, чтобы объяснить несколько параметров, характеризующих современную Вселенную. Для этого создаются модели, где не только много параметров, но и предполагается, что за инфляцию ответственно инфлатонное поле, частицы которого никто никогда не наблюдал. Тогда современное состояние Вселенной объясняется тем, что когда-то была инфляция, т.е., Вселенная очень быстро расширилась. Например, в одном из известных сценариев, который предложил знаменитый космолог Guth, размер Вселенной изменился с 10-26m

до 1m и это произошло за 10-35s. Для описания этого сценария используется квантовая теория инфлатонного поля и ОТО. Т.е., считается, что хотя ОТО – чисто классическая теория, ее можно применять на расстояниях 10-26и временах 10-35s. Т. е. в духе классической физики, что когда мы пишем x=10-26
или t=10-35s, то думаем, что эти выражения имеют смысл. Однако, понятия координат и времени возникли из классической физики. Это величины, которые могут быть измерены с точностью не лучше чем размер атома и 10-18s соответственно.

Считается, что наилучшая точность в измерении времени 10-15s

получается при использовании перехода в атоме Цезия133, и есть утверждения, что точность может быть улучшена до 10-18s. В инфляционных моделях Вселенной считается, что инфляция происходила когда во Вселенной не было не только атомов, но и даже ядер, а тогда непонятно, имеет ли смысл время в таких ситуациях. В квантовой теории бессмысленно говорить, что "на самом деле" некоторая физическая величина существует, но не может быть измерена.

С точки зрения квантовой теории говорить о координатах 10-26и временах 10-35s бессмысленно т.к. неизвестно есть ли оператор координаты на таких масштабах и проблема времени – одна из фундаментальных нерешенных проблем квантовой теории. Более того, например, в копенгагенской интерпретации квантовой теории, измерение – это взаимодействие с классическим объектом, а на этом этапе Вселенной никаких классических объектов быть не может. Но в теории инфляционной Вселенной эти проблемы даже не обсуждаются.

Например, произносятся слова, что на инфляционной стадии вселенной важны квантовые эффекты. Но как их учесть, если квантовой теории при таких условиях нет? Например, А. Старобинский добавляет к классическому лагранжиану ОТО новый член, который он называет квантовой поправкой. Но то, что к классическому лагранжиану добавили какой-то член, не означает, что теория стала квантовой. Она осталась полностью классической т.к. в ней остались классические пространство и время и классический принцип наименьшего действия.

Другой пример – теория струн или M-теория, которая провозглашается как theory of everything. Здесь считается, что вся физика будет выведена из топологии гладких многообразий на планковских длинах 10-35m. Но в физике частиц расстояния не измеряются непосредственно. Когда говорят, что какой-то процесс происходит на расстояниях l, то имеют в виду, что переданные импульсы в этом процессе – порядка ћ/l. Тогда планковским длинам соответствуют импульсы порядка 1019 Gev/c, которые, наверное, никогда не будут достижимы на ускорителях. Кроме того, при этом предполагается, что координатные и импульсные представления связаны преобразованием Фурье, а, как показано в моих работах, это предположение не основано ни на имеющихся данных ни на надежных физических принципах. Между тем, теория струн и М-теория строятся, исходя из координатного представления, хотя опыт квантовой теории показывает, что понятие непрерывных координат становится проблематичным уже на расстояниях намного больших планковских.

Я также думаю, что теории Big Bang и струн не могут быть правильными, исходя из известной фразы Бора. Как-то на обсуждении доклада на семинаре, где он присутствовал, кто-то сказал, что теория автора не может быть правильной т.к. она слишком сумасшедшая. На что Бор возразил, что эта теория не может быть правильной потому, что она недостаточно сумасшедшая. Теории Big Bang и струн явно недостаточно сумасшедшие т.к. в них предполагается, что существующие понятия работают при энергиях намного больших чем те которые мы знаем.

Перейти на страницу:

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное
Прикладные аспекты аварийных выбросов в атмосферу
Прикладные аспекты аварийных выбросов в атмосферу

Книга посвящена проблемам загрязнения окружающей среды при авариях промышленных предприятий и объектов разного профиля и имеет, в основном, обзорный справочный характер.Изучается динамика аварийных турбулентных выбросов при наличии атмосферной диффузии, характер расширения турбулентных струйных потоков, их сопротивление в сносящем ветре, эволюция выбросов в реальной атмосфере при наличии инверсионных задерживающих слоев.Классифицируются и анализируются возможные аварии с выбросами в атмосферу загрязняющих и токсичных веществ в газообразной, жидкой или твердой фазах, приводятся факторы аварийных рисков.Рассмотрены аварии, связанные с выбросами токсикантов в атмосферу, описаны математические модели аварийных выбросов. Показано, что все многообразие антропогенных источников загрязнения атмосферного воздуха при авариях условно может быть разбито на отдельные классы по типу возникших выбросов и характеру движения их вещества. В качестве источников загрязнений рассмотрены пожары, взрывы и токсичные выбросы. Эти источники в зависимости от специфики подачи рабочего тела в окружающее пространство формируют атмосферные выбросы в виде выпадающих на поверхность земли твердых или жидких частиц, струй, терминов и клубов, разлитий, испарительных объемов и тепловых колонок. Рассмотрены экологические опасности выбросов при авариях и в быту.Книга содержит большой иллюстративный материал в виде таблиц, графиков, рисунков и фотографий, который помогает читателю разобраться в обсуждаемых вопросах. Она адресована широкому кругу людей, чей род деятельности связан преимущественно с природоохранной тематикой: инженерам, научным работникам, учащимся и всем тем, кто интересуется экологической и природозащитной тематикой.

Вадим Иванович Романов

Математика / Экология / Прочая справочная литература / Образование и наука / Словари и Энциклопедии