Читаем Популярно о конечной математике и ее интересных применениях в квантовой теории полностью

Классическая математика содержит факты, которые, казалось бы, противоречат здравому смыслу. Например, функция tgx является взаимно-однозначным отображением интервала (-π/2,π/2) на (-∞,∞). Поэтому часть имеет столько же элементов сколько целое. Другой пример – парадокс Grand Hotel Гильберта. Но в подходе Гильберта эти примеры не считаются противоречивыми. Классическая математика исходит из аксиом, которые принимаются на веру, без доказательства. Казалось бы, раз наука – не религия, то в ней не должно быть утверждений принимаемых на веру. Более того, как следует из теорем Гёделя, любая математика, основанная на множестве всех натуральных чисел, содержит утверждения, которые не могут быть доказаны и такая математика не может доказать, что она самосогласованна.

Я спрашивал у математиков, что раз они утверждают, что исходят из строгой науки, то тогда как же быть с теоремами Гёделя, которые говорят, что стандартная математика нестрогая? Но обычный ответ такой что раз теория, исходящая из аксиом стандартной математики хорошо описывает природу, то такой подход допустим, и вся история человечества считается подтверждением утверждения, что классическая математика в принципе может описать любые природные явления. То есть здесь математики уже отказываются от подхода Гильберта и считают, что математика – это не просто абстрактная наука в духе подхода Гильберта, а наука, которая описывает природу. И, как я уже писал, философия многих физиков еще более дубоголовая. Хотя существующая квантовая физика основана на классической математике, они считают, что даже общепринятая строгость в этой математике необязательна, а главное, чтобы теория описывала эксперимент.

Я спрашивал у физиков и математиков, что раз в природе нет бесконечно малых, то тогда выходит, что производная – нестрогое понятие. Некоторые математики отвечают, что рано или поздно электрон разделят и докажут, что бесконечно малые существуют. Физики обычно согласны, что бесконечно малых в природе нет. Они говорят, что dx/dt

надо понимать как Δxt где Δx
и Δt – малые, но не бесконечно малые. Я им говорю: но ведь ты используешь математику с dx/dt, а не с Δx
t. А они говорят, что раз математика с производными хорошо работает, то незачем философствовать и придумывать что-то другое (а другой математики они не знают).

История физики показывает, что рано или поздно аргумент, что если что-то хорошо работает, то нечего философствовать, оказывается неправильным. Например, нерелятивистская механика хорошо работает в 99.9…% случаев. Но теперь мы знаем, что это потому что в этих случаях скорости намного меньше скорости света. А в случаях когда скорости сравнимы со скоростью света, нерелятивистская механика не работает. И раз в природе нет бесконечно малых, то рано или поздно проявятся случаи когда классическая математика не работает. Ниже я обсуждаю такие случаи.

Из того факта, что природа состоит из атомов, следует, что стандартные геометрические понятия (например, непрерывные кривые и поверхности) могут работать только в приближении когда размерами атомов пренебрегается. Например, если мы нарисуем на бумаге якобы непрерывную кривую и посмотрим на нее в микроскоп, то увидим, что кривая сильно разрывная так как состоит из атомов.

Исторически сложилось так, что основатели квантовой теории и физики, внесшие большой вклад в эту теорию, хотя и были высококвалифицированными учеными, но их мышление было основано на классической математике, а, скажем, дискретная и конечная математика не входили (и до сих пор не входят) в программу стандартного физического образования.

Если бы классическая математика правильно описывала все эксперименты, то, наверное, можно было примириться с тем что есть теоремы Гёделя и надеяться, что рано или поздно их можно будет обойти и выполнить программу Гильберта. Но развитие квантовой теории показало, что в рамках классической математики возникают большие проблемы в построении того что называют ultimate quantum theory. Главная проблема – что в теории возникают бесконечные выражения. В перенормируемых теориях (например, в квантовой электродинамике, квантовой хромодинамике и электрослабой теории) бесконечности можно устранить, умножая одну сингулярность на другую. Но, например, квантовая гравитация, основанная на квантовой теории поля является неперенормируемой теорией и в ней бесконечности устранить нельзя.

Как пишет знаменитый физик и лауреат Нобелевской премии Weinberg о проблеме бесконечностей в своем учебнике [3]: “Disappointingly this problem appeared with even greater severity in the early days of quantum theory, and although greatly ameliorated by subsequent improvements in the theory, it remains with us to the present day". Название статьи Weinberg [4]: "Living with infinities".

9.6. О квантовой теории поля

Перейти на страницу:

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное
Прикладные аспекты аварийных выбросов в атмосферу
Прикладные аспекты аварийных выбросов в атмосферу

Книга посвящена проблемам загрязнения окружающей среды при авариях промышленных предприятий и объектов разного профиля и имеет, в основном, обзорный справочный характер.Изучается динамика аварийных турбулентных выбросов при наличии атмосферной диффузии, характер расширения турбулентных струйных потоков, их сопротивление в сносящем ветре, эволюция выбросов в реальной атмосфере при наличии инверсионных задерживающих слоев.Классифицируются и анализируются возможные аварии с выбросами в атмосферу загрязняющих и токсичных веществ в газообразной, жидкой или твердой фазах, приводятся факторы аварийных рисков.Рассмотрены аварии, связанные с выбросами токсикантов в атмосферу, описаны математические модели аварийных выбросов. Показано, что все многообразие антропогенных источников загрязнения атмосферного воздуха при авариях условно может быть разбито на отдельные классы по типу возникших выбросов и характеру движения их вещества. В качестве источников загрязнений рассмотрены пожары, взрывы и токсичные выбросы. Эти источники в зависимости от специфики подачи рабочего тела в окружающее пространство формируют атмосферные выбросы в виде выпадающих на поверхность земли твердых или жидких частиц, струй, терминов и клубов, разлитий, испарительных объемов и тепловых колонок. Рассмотрены экологические опасности выбросов при авариях и в быту.Книга содержит большой иллюстративный материал в виде таблиц, графиков, рисунков и фотографий, который помогает читателю разобраться в обсуждаемых вопросах. Она адресована широкому кругу людей, чей род деятельности связан преимущественно с природоохранной тематикой: инженерам, научным работникам, учащимся и всем тем, кто интересуется экологической и природозащитной тематикой.

Вадим Иванович Романов

Математика / Экология / Прочая справочная литература / Образование и наука / Словари и Энциклопедии