Читаем Популярно о конечной математике и ее интересных применениях в квантовой теории полностью

Но дополнительный толчок к де Ситтеру дал разговор с моим родственником и тогдашним начальником Эдиком Мирмовичем. Как-то он рассказал мне о своей идее, что фундаментальными физическими величинами являются угловые моменты. Я пытался понять, что он имел в виду. Помню я ему сказал, что в группе Пуанкаре 10 генераторов, из них 6 описывают обычные и Лоренцевские вращения, но остальные 4 – энергия и импульс – уже не вращения. Спросил, имел ли он в виду де Ситтера. Здесь все 10 генераторов – угловые моменты. Из них 6 – такие же как в Пуанкаре, а остальные 4 при контракции де Ситтера в Пуанкаре переходят в энергию и импульс. Так что на квантовом уровне эта идея – как раз то, что написано в статье Дайсона.

После этого разговора, у меня появилась надежда, что удастся заниматься де Ситтером не только в свободное от работы время, но и в рабочее время. Увы, это оказалось только надеждой и не буду описывать почему. Но удалось опубликовать несколько статей в журнале Journal of Physics A: Mathematical and General, который тогда был очень приличным, а теперь стал кондовым (см. ниже). Пожалуй, наиболее важный результат такой. В духе знаменитой работы Вигнера, элементарные частицы описываются неприводимыми представлениями группы симметрии. Т.е., в Пуанкаре инвариантной теории это представления группы Пуанкаре, а в де Ситтер инвариантной теории – представления группы де Ситтера. Еще более точно, в духе идеи Л.А. Кондратюка, надо рассматривать не представления групп, а представления соответствующих алгебр Ли.

В представлениях алгебры Пуанкаре спектр оператора энергии либо строго положителен либо строго отрицателен. Первые представления ассоциируют с частицами, а вторые – с античастицами. Но в so(1,4) алгебре де Ситтера одно неприводимое представление содержит состояния как с положительными так и с отрицательными энергиями. В предельном переходе R→∞ одно неприводимое представление алгебры so(1,4) разбивается на два неприводимых представления алгебры Пуанкаре для частицы и ее античастицы. Поэтому, с точки зрения симметрии де Ситтера, сами понятия частицы и античастицы только приближенные. И законы сохранения электрического заряда, барионного и лептонных квантовых чисел могут быть только приближенными. Сейчас они хорошо работают потому что на данном этапе эволюции Вселенной величина R очень большая. Но если Вселенная произошла из чего-то малого, то на ее ранних стадиях R

не было большим и все эти законы сохранения не имели места. Возможно, что объяснение так наз. проблемы барионной асимметрии Вселенной как раз такое. В любом случае, этот пример показывает, что, всегда когда можно, надо иметь дело с более общей теорией, даже если кажется, что менее общая теория является достаточным приближением.

11.3. О размерностях

Прежде чем описывать мой подход основанный на конечной математике, сделаю такое замечание. В физике, основанной на конечной математике, все физические величины могут быть только дискретными. В такой ситуации непонятно, имеют ли смысл размерности физических величин и связь между различными единицами измерения. Размерности существуют уже 300 лет или больше и о них по-прежнему много говорят. Но квантовая теория и релятивизм явно намекают (хотя даже в учебниках это не пишут), что на размерности может быть другой взгляд. Например, квантовая теория говорит, что угловой момент может быть только целым или полуцелым в единицах ћ. Исторически сложилось так, что угловой момент измеряют в единицах m·

kg/sec. Но это необязательно. На фундаментальном уровне угловой момент – просто целое или полуцелое число. Т.е., можно вообще забыть про ћ. Многие пишут, что работают в системе единиц, где ћ=1. Это затуманивает т.к. создает впечатление, что мы пересчитываем из одних единиц в другие. А на самом деле это означает, что про ћ можно забыть. Т.е., переход от квантовой теории к классической – это не ћ→0, а просто когда угловые моменты очень большие. Этот пример поучителен еще тем, что показывает, что когда дискретная величина большая, то она кажется непрерывной.

Другой пример – релятивизм говорит, что c – фундаментальная константа и что никакая скорость v не может быть больше c

(если не учитывать тахионы). Но это означает, что в непрерывной релятивистской теории скорости можно считать безразмерными. Грубо говоря, их можно измерять в единицах v/c. Но на самом деле это означает, что в такой теории скорости должны измеряться величинами меньшими единицы, а про c можно забыть вообще. Тогда переход к нерелятивизму – это не когда c→∞, а частный случай ситуации когда все v<<1.

Перейти на страницу:

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное
Прикладные аспекты аварийных выбросов в атмосферу
Прикладные аспекты аварийных выбросов в атмосферу

Книга посвящена проблемам загрязнения окружающей среды при авариях промышленных предприятий и объектов разного профиля и имеет, в основном, обзорный справочный характер.Изучается динамика аварийных турбулентных выбросов при наличии атмосферной диффузии, характер расширения турбулентных струйных потоков, их сопротивление в сносящем ветре, эволюция выбросов в реальной атмосфере при наличии инверсионных задерживающих слоев.Классифицируются и анализируются возможные аварии с выбросами в атмосферу загрязняющих и токсичных веществ в газообразной, жидкой или твердой фазах, приводятся факторы аварийных рисков.Рассмотрены аварии, связанные с выбросами токсикантов в атмосферу, описаны математические модели аварийных выбросов. Показано, что все многообразие антропогенных источников загрязнения атмосферного воздуха при авариях условно может быть разбито на отдельные классы по типу возникших выбросов и характеру движения их вещества. В качестве источников загрязнений рассмотрены пожары, взрывы и токсичные выбросы. Эти источники в зависимости от специфики подачи рабочего тела в окружающее пространство формируют атмосферные выбросы в виде выпадающих на поверхность земли твердых или жидких частиц, струй, терминов и клубов, разлитий, испарительных объемов и тепловых колонок. Рассмотрены экологические опасности выбросов при авариях и в быту.Книга содержит большой иллюстративный материал в виде таблиц, графиков, рисунков и фотографий, который помогает читателю разобраться в обсуждаемых вопросах. Она адресована широкому кругу людей, чей род деятельности связан преимущественно с природоохранной тематикой: инженерам, научным работникам, учащимся и всем тем, кто интересуется экологической и природозащитной тематикой.

Вадим Иванович Романов

Математика / Экология / Прочая справочная литература / Образование и наука / Словари и Энциклопедии