Такая философия общепринята несмотря даже на то, что проблема расходимостей как возникла в 40х годах 20-го века, так и существует до сих пор. В так наз. перенормируемых теориях эту проблему можно как-то обойти, но в квантовой гравитации и это не удается. Тем не менее, большинство физиков не считают проблему расходимостей серьезной. По их мнению, раз теория дает 8 правильных знаков для аномальных магнитных моментов электрона и мюона, 5 правильных знаков для Лэмбовского сдвига и т.д., то рано или поздно все остальные проблемы тоже решатся при помощи стандартной математики.
Например, Weinberg, который внес большой вклад в QFT, пишет что QFT должна рассматриваться "in the way it is," но в то же время она является "low energy approximation to a deeper theory that may not even be a field theory, but something different like a string theory". Т. е. он признает, что проблемы существуют и думает, что они будет решены в какой-то теории обобщающей QFT, но которая опять-таки будет основана на стандартной непрерывной математике.
Таким образом, получается странная ситуация: все, вроде бы, согласны, что природа дискретна и об этом говорит даже термин "квантовая теория". Но все проблемы теории пытаются решить при помощи непрерывной математики. Т.е., все получается как в анекдоте, который рассказал мне мой друг Толя Штилькинд: "Группа обезьян получила задание достичь Луну. После этого все обезьяны начали карабкаться на деревья. Та обезьяна, которая залезла выше всех, думает, что у нее самый большой прогресс, и она ближе к цели чем остальные обезьяны". Этот анекдот я привел даже в своей монографии [7]. Этот анекдот также содержит мораль, что, чтобы достичь Луну, надо вначале слезть с деревьев. Эту мораль я не привел, считая ее очевидной.
Из сказанного ясно, что у физиков необходимость в конечной математике может возникнуть только в двух случаях: а) они убедятся, что при помощи только стандартной математики проблемы решить нельзя (т.е., пока гром не грянет, мужик не перекрестится); 2) при помощи конечной математики будут получены важные физические результаты, которые не могут быть получены в непрерывной математике.
Как и большинство физиков, я не знал самых основ конечной математики. Чисто случайно, когда мне было около 40, наткнулся на книгу (уже не помню какую), которая показалась мне интересной. Из нее узнал про поля Галуа и удивился, что физики их не знают, хотя их можно преподавать уже в первом или втором классе (например, после того как прошли деление).
Простой пример поля Галуа – множество F5
из пяти элементов (0, 1, 2, 3, 4), в котором действия определяются так. Сложение определяется как обычно, но по модулю 5. Например, 1+1=2, 2+2=4 как обычно, но 2+3=0 или 4+4=3. ЕслиБолее общий пример поля Галуа – множество F
Читатель может сказать, что пример с F5
не имеет никакого отношения к реальной жизни, где, например 3+2=5, а не 3+2=0. Но допустим, что физика в нашем мире определяется математикой с полем Галуа FНо читатель может сказать, что пример с F