Читаем Популярно о конечной математике и ее интересных применениях в квантовой теории полностью

Например, релятивистская теория более общая чем нерелятивистская не только из физических соображений, а просто потому, что группа Галилея – частный случай группы Пуанкаре: группа Галилея получается из группы Пуанкаре контракцией. А группа де Ситтера более общая чем группа Пуанкаре т. к. группа Пуанкаре получается из группы де Ситтера контракцией. А т.к. группа де Ситтера полупростая, то ее уже нельзя обобщить дальше. Казалось бы, из этого должно сразу следовать, что теории претендующие на то, чтобы считаться фундаментальными (например QFT) должны строится на де Ситтер симметрии, а не на Пуанкаре симметрии. Какие-то попытки в этом направлении были. Например, помню, что был на лекции В.Г. Кадышевского в Политехническом Музее, где он говорил, что для де Ситтера расходимости устраняются лучше. Сейчас многие занимаются де Ситтер теорией, но как? Об этом ниже. Но статья Дайсона появилась в 1972 г., т. е. прошло уже более 50 лет, а учебники по QFT по-прежнему исходят из релятивистской инвариантности (т.е., Пуанкаре симметрии) и все самые громкие проекты основаны на этой инвариантности.

Из моих обсуждений с физиками, работающими в частицах, у меня сложилось такое впечатление о вероятной причине. Многие из них знают, что де Ситтер симметрия формально более общая чем Пуанкаре симметрия, и что вторая получается из первой в формальном пределе R→∞, где R

– это как бы радиус Вселенной. И т. к. этот радиус намного больше размеров элементарных частиц, то они думают, что де Ситтер симметрия может иметь смысл в космологии, а применять ее к частицам совершенно незачем. Однако, более общая теория может пролить совсем другой свет на стандартные понятия и, как описано ниже, в случае с де Ситтер симметрией это действительно так даже в частицах.

Много лет спустя я написал Дайсону, что его статья произвела на меня впечатление, и, в духе этой статьи, конечная математика более фундаментальна чем классическая. Еще, в частности, написал: "Most physicists and mathematicians believe that standard continuum math is fundamental while finite math is something inferior. They do not care much that standard math has foundational problems and even such beautiful minds as Cantor, Gödel, Hilbert, Zermelo and many others could not solve them.

I give simple arguments that the situation is the opposite: standard math is only a special case of finite one in the formal limit when the characteristic of the ring or field in finite math goes to infinity. So the foundational problems of standard math are not fundamental. Maybe this is not politically correct to say but I believe that by introducing infinities people created a headache for themselves and now heroic efforts are needed to get rid of this headache”.

Надеялся, что он меня поддержит. Но его ответ был такой: "No useful comments. Whether you prefer Galois fields or a continuum is a matter of taste. To my taste, Galois fields are beautiful but the continuum is even more beautiful. Yours, Freeman Dyson. " Что ж, и на этом спасибо. Во всяком случае он не сказал, что я написал бессмыслицу, покушаюсь на святое и т.д. Но я был разочарован тем, что даже такой образованный физик и математик не признает, как мне кажется, очевидное. Что тогда можно ожидать от других? Я вернусь к этому вопросу ниже.

Сейчас пытаюсь вспомнить когда читал эту статью Дайсона. Кажется, это было приблизительно в 1977 г. Эта оценка основана на том, что статью читал в квартире Н.В. Кузнецова в Хабаровске, где он просил пожить на время его отъезда. Я стал жить в Хабаровске после защиты кандидатской в конце 1976 г., а в начале 1978 г. институт дал мне какое-то жилье, так что мне незачем было у кого-то жить. И тогда может возникнуть такой вопрос. Я критикую физиков за то, что они сразу после статьи не перешли с Пуанкаре на де Ситтера, а почему я сам сразу не перешел? Попробую как-то оправдаться.

Раньше думал, что после защиты кандидатской даже не буду пытаться сделать докторскую. а буду заниматься чем хочу. Когда кандидат наук получал должность старшего научного сотрудника (с.н.с), его зарплата в Хабаровске была 360 рублей в месяц т.к. базовая зарплата была 300 и дальневосточный коэффициент был 1.2. На такие деньги вполне можно было хорошо жить и ни о чем не думать. Но Н. В. Кузнецов не хотел давать мне с.н.с и, кроме того, жизнь стала ухудшаться. Поэтому стал думать о том, что докторскую делать придется. И т. к. жил далеко от Москвы, то возможности контактов с учеными были ограничены, и я решил, что единственной реальной возможностью для меня сделать докторскую была теория релятивистских прямых взаимодействий, о которой писал выше. На это уходило почти все время и поэтому серьезно заниматься чем-то другим не получалось.

Перейти на страницу:

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное
Прикладные аспекты аварийных выбросов в атмосферу
Прикладные аспекты аварийных выбросов в атмосферу

Книга посвящена проблемам загрязнения окружающей среды при авариях промышленных предприятий и объектов разного профиля и имеет, в основном, обзорный справочный характер.Изучается динамика аварийных турбулентных выбросов при наличии атмосферной диффузии, характер расширения турбулентных струйных потоков, их сопротивление в сносящем ветре, эволюция выбросов в реальной атмосфере при наличии инверсионных задерживающих слоев.Классифицируются и анализируются возможные аварии с выбросами в атмосферу загрязняющих и токсичных веществ в газообразной, жидкой или твердой фазах, приводятся факторы аварийных рисков.Рассмотрены аварии, связанные с выбросами токсикантов в атмосферу, описаны математические модели аварийных выбросов. Показано, что все многообразие антропогенных источников загрязнения атмосферного воздуха при авариях условно может быть разбито на отдельные классы по типу возникших выбросов и характеру движения их вещества. В качестве источников загрязнений рассмотрены пожары, взрывы и токсичные выбросы. Эти источники в зависимости от специфики подачи рабочего тела в окружающее пространство формируют атмосферные выбросы в виде выпадающих на поверхность земли твердых или жидких частиц, струй, терминов и клубов, разлитий, испарительных объемов и тепловых колонок. Рассмотрены экологические опасности выбросов при авариях и в быту.Книга содержит большой иллюстративный материал в виде таблиц, графиков, рисунков и фотографий, который помогает читателю разобраться в обсуждаемых вопросах. Она адресована широкому кругу людей, чей род деятельности связан преимущественно с природоохранной тематикой: инженерам, научным работникам, учащимся и всем тем, кто интересуется экологической и природозащитной тематикой.

Вадим Иванович Романов

Математика / Экология / Прочая справочная литература / Образование и наука / Словари и Энциклопедии