Читаем Приглашение в теорию чисел полностью

В «Библии», особенно в «Ветхом Завете», особую роль играет число 7, в древнегерманском фольклоре часто встречаются числа 3 и 9, индусы же, как видно из их мифологии, неравнодушны к числу 10.

§ 3. Задача Пифагора

Примером ранней теории чисел может служить задача Пифагора. Как мы знаем, в прямоугольном треугольнике длины сторон удовлетворяют соотношению Пифагора

z2 = x2 + y2, (1.3.1)

где z — длина гипотенузы. Это дает возможность в прямоугольном треугольнике вычислить длину одной стороны, если известны две другие. Между прочим, то, что эту теорему назвали в честь греческого философа Пифагора, не совсем справедливо: она была известна вавилонянам почти за 2000 лет до Пифагора.

Иногда все длины сторон x, y, z в (1.3.1) выражаются целыми числами. Простейший случай,

x = 3, y = 4, z = 5, (1.3.2)

был найден на вавилонских глиняных табличках. Этому случаю можно дать следующее истолкование. Предположим, что у нас есть веревочное кольцо с узелками или метками, расположенными на равных расстояниях и делящими кольцо на 12 частей. Тогда, если мы растянем кольцо на трех колышках, вбитых на поле, так, чтобы получился треугольник со сторонами 3 и 4, то третья сторона будет иметь длину 5, а противоположный ей угол будет прямым (рис. 1). Часто можно прочесть в книгах по истории математики, что именно этот метод построения прямого угла использовался египетскими землемерами или «натягивателями веревки» при размежевании полей по окончании разлива Нила. Однако вполне возможно, что это один из мифов, которых так много в истории науки; у нас нет документов, подтверждающих это предположение.

Рис 1.


Существует много других целочисленных решений уравнения Пифагора (1.3.1), например,

х = 5, у = 12, z = 13,

х = 7, у = 24, z = 25,

x = 8, у = 15, z = 17.

Далее мы покажем, как можно получить все такие решения. Способ находить их был известен древним грекам, а возможно, и вавилонянам.

Если даны два целых числа, x и y, то всегда можно найти соответствующее число z

, удовлетворяющее уравнению (1.3.1), но вполне возможно, что z будет иррациональным числом. Если же потребовать, чтобы все три числа были целыми, то тогда возможности существенно ограничиваются. Греческий математик Диофант (время его жизни точно не известно, приблизительно 200 г. нашей эры) написал книгу Arithmetica («Арифметика»), в которой рассматриваются подобные задачи. С этого времени задача нахождения целочисленных или рациональных решений уравнений называется задачей Диофанта, а диофантов анализ — важная часть современной теории чисел.


Система задач 1.3.

1. Попытайтесь найти другое решение уравнения Пифагора в целых числах.

2. Попытайтесь найти решения уравнения Пифагора, в которых гипотенуза на единицу больше, чем больший из двух катетов.

§ 4. Фигурные числа

В теории чисел мы часто встречаемся с квадратами, т. е. такими числами, как

32 = 9, 72 = 49, 102 = 100,

и аналогично с кубами, т. е. такими числами, как

23 = 8, 33 = 27, 53

= 125.

Рис. 2.


Этот геометрический образ рассматриваемой операции с числами является частью богатого наследства, оставленного древнегреческими мыслителями. Греки предпочитали думать о числах, как о геометрических величинах: произведение с = аb рассматривалось как площадь с прямоугольника со сторонами a и b. Также можно было рассматривать a•b как число точек в прямоугольной таблице с а точками на одной стороне и b точками на другой. Например, 20 = 4•5 есть число точек в прямоугольной таблице на рис. 2.

Любое целое число, которое является произведением двух целых чисел, можно было бы назвать прямоугольным числом. Когда две стороны прямоугольника имеют одну и ту же длину, то такое число является квадратным числом, или квадратом. Некоторые числа нельзя представлять в виде прямоугольных чисел иначе, как тривиальным способом — в виде цепочки точек, лежащих в одном ряду. Например, пять может быть представлено как прямоугольное число лишь единственным способом, взяв одну сторону равной единице, а другую — пяти (рис. 3).


• • • • •

Рис. 3.


Такие числа греки называли простыми числами. Точка, взятая в одном экземпляре, не рассматривалась как число. Число 1 явилось тем кирпичом, из которого строились все остальные числа. Таким образом, 1 не была для них и не считается сейчас простым числом.

Можно было бы рассматривать точки, равномерно заполняющие не только прямоугольники и квадраты, но и другие геометрические фигуры. Последовательные треугольные числа изображены на рис. 4.

Рис. 4.


В общем случае n-е треугольное число задается формулой


Тn = ½ n (n+1), n = 1, 2, 3… (1.4.1)


У этих чисел масса интересных свойств: например, сумма двух последовательных треугольных чисел является квадратом

1 + 3 = 4, 3 + 6 = 9, 6 + 10 = 16 и т. д. (1.4.2)

Перейти на страницу:

Все книги серии Библиотечка Квант

Похожие книги

Путешествие по Карликании и Аль-Джебре
Путешествие по Карликании и Аль-Джебре

«Сказки да не сказки» — так авторы назвали свою книжку. Действие происходит в воображаемых математических странах Карликании и Аль-Джебре. Герои книги, школьники Таня, Сева и Олег, попадают в забавные приключения, знакомятся с основами алгебры, учатся решать уравнения первой степени.Эта книга впервые пришла к детям четверть века назад. Её первые читатели давно выросли. Многие из них благодаря ей стали настоящими математиками — таким увлекательным оказался для них мир чисел, с которым она знакомит.Надо надеяться, с тем же интересом прочтут её и нынешние школьники. «Путешествие по Карликании и Аль-Джебре» сулит им всевозможные дорожные приключения, а попутно — немало серьёзных сведений о математике, изложенных весело, изобретательно и доступно. Кроме того, с него начинается ряд других математических путешествий, о которых повествуют книги Владимира Лёвшина «Нулик-мореход», «Магистр рассеянных наук», а также написанные им в содружестве с Эмилией Александровой «Искатели необычайных автографов», «В лабиринте чисел», «Стол находок утерянных чисел».

Владимир Артурович Левшин , Эмилия Борисовна Александрова

Детская образовательная литература / Математика / Книги Для Детей / Образование и наука