4.3.
Если два простых числа идут подряд, то одно из них четно, а значит, равно 2 (см. решение задачи 4.1). Тогда второе число непременно равно 3, поскольку 1 не является простым числом. Итак, нами найдена единственная пара идущих подряд простых чисел. Отсюда следует, что тройки идущих подряд простых чисел не существует, так как из такой тройки можно было бы образовать две различные пары идущих подряд простых чисел, а именно первое число со вторым и второе с третьим.4.4.
Последовательные числа 24, 25, 26, 27, 28 образуют искомую пятерку. Докажем, что для любого натурального значения n найдутся n идущих подряд составных чисел. В самом деле, каждое из n чиселявляется составным, поскольку число
делится на 2, 3, ..., n и n+1, откуда первое число (n+1)!+2 делится на 2, второе число (n+1)!+3 делится на 3,..., (n-1)-е число (n+1)!+n делится на n, а n-е число (n+1)!+(n+1) делится на n+1.
4.5.
Докажем, что любое составное число n имеет простой делитель, не превосходящий4.6.
а) 315 = 32
*5*7;б) 127 - простое число, так как оно не делится ни на одно из простых чисел 2, 3, 5, 7, 11, не превосходящих
в) 1001 = 7*11*13;
г) 899 = 302
-12 = 29*31;д) 919 - простое число, так как оно не делится ни на одно из простых чисел, не превосходящих
4.7.
В результате описанной в условии задачи процедуры в ряду чисел от 1 до л не будет зачеркнуто ни одно простое число, так как на каждом шагу зачеркиваются только числа, кратные каким-то другим числам. Число k (большее 1) из этого ряда останется незачеркнутым только в том случае, если оно не делится ни на одно из незачеркнутых чисел, не превосходящих4.8.
Зачеркнув в ряду чисел от 1 до 100 сначала число 1, затем числа, кратные 2, кроме числа 2, затем числа, кратные 3, кроме числа 3, затем числа, кратные 5, кроме числа 5, и, наконец, числа, кратные 7, кроме числа 7, мы получим следующий набор незачеркнутых чисел:2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97.
На этом следует остановиться, поскольку следующее за числом 7 незачеркнутое число 11 уже превосходит4.9.
Так как121, 127, 131, 133, 137, 139, 143, 149.
Учитывая, что число 121 делится на 11, а число 140 - на 7, находим среди оставшихся чисел все числа, кратные 11 или 7. Вычеркнув их, мы получаем ответ:127, 131, 137, 139, 149. 4.10.
Число не делится ни на 2, ни на 3, ни на 5 в том и только в том случае, если его остаток от деления на 30=2x3x5 не делится ни на одно из этих чисел. Так както, вычеркнув из всех возможных значений остатков от деления на 30, т. е. из чисел от 0 до 29, числа, кратные 2, 3 или 5, мы получим число 1 и все простые числа (см. задачу 4.7). Следовательно, набор искомых остатков выглядит так:
1, 7, 11, 13, 17, 19, 23, 29.
Благодаря этому наблюдению при отыскании простых чисел (больших 5) можно выписывать не все числа подряд, а только те, которые дают указанные здесь восемь остатков от деления на 30, что позволяет сэкономить работу по выписыванию в4.11.
Так как473, 479, 481, 487, 491, 493, 497, 499, 503, 509, 511, 517.
Из этих чисел теперь остается только вычеркнуть числа, кратные 7 (497, 511), кратные 11 (473, 517), кратные 13(503), кратные 17 (493) и кратные 19 (таких нет), и получить окончательный набор479, 481, 487, 491, 499, 509.
§ 5. Вокруг наибольшего общего делителя