Читаем Примени математику полностью

в целых неотрицательных числах, которое имеет единственное решение x" = 0, y" = 2, z' = 0. Таким образом, возвращаясь к исходным неизвестным, мы получаем единственное решение первоначального уравнения x = 2, y = 4, z = 1, т. е. 140 кг гвоздей можно отпустить только с помощью 2 ящиков по 16 кг, 4 ящиков по 17 кг и 1 ящика в 40 кг.

6.6. Если в правой части уравнения

ax + by = c

стоит отрицательное число, то умножим обе части уравнения на -1 и получим уравнение с положительным числом в правой части. Будем считать, что эта операция уже произведена с самого начала. Если коэффициент а отрицателен, то заменим неизвестную x неизвестной x' = -x и получим уравнение

-ax' + by = c

с положительным коэффициентом -а. Аналогично, если b<0, то замена y' = -y приводит к уравнению

ax - by' = c

с положительным коэффициентом -b. Поэтому каждый из коэффициентов а и b соответствующей заменой неизвестной можно сделать положительным. Будем считать, что это уже сделано. Если числа а и b не являются взаимно простыми, то наибольший общий делитель (a, b) = d чисел а и b должен быть делителем числа с (иначе в силу утверждения задачи 6.3 уравнение в целых числах не будет иметь решений). Поэтому имеем a = a'd, b = b'd, c = c'd и, поделив обе части уравнения на d, получаем уравнение

a'x + b'y = c'

с взаимно простыми коэффициентами а' и b'.

6.7. Пусть было использовано x, y и z вагонов вместимостью по 15 т, по 20 т и по 25 т

соответственно. Тогда имеем

15x + 20y + 25z= 420, x + y + z = 27,

т. е. числа y и z должны удовлетворять уравнению

15(27 - y - z)+ 20y + 25z = 420

в натуральных числах. Преобразовывая это уравнение, получаем

y + 2z = 3,

т. е. y = z = 1 и x = 25. Итак, было использовано 25 вагонов по 15 т, 1 вагон в 20 т и 1 вагон в 25 т.

6.8. Если пара чисел x, y наряду с парой чисел x0, y0 удовлетворяет уравнению

ax + by = c

в целых числах с взаимно простыми коэффициентами а и b, то имеем ах + by = с = аx0 + by0, откуда а(x - x0) + b(y - y0) = 0. Так как число является целым, а числа b и а не имеют общих делителей, то число также является целым. Поэтому x - x0 = bk и y - y0 = ak, откуда получаем равенства

x = x0

+ bk, y = y0 + ak.

Мы доказали, что любое решение уравнения задается указанными формулами. С другой стороны, при любом целом значении к имеем

a(x0 + bk) + b(y0 - ak) = ax0 + by0 = c,

т. е. ничего кроме решений эти формулы не задают.

6.9. Для неизвестных x и y, обозначающих количество мешков по 60 и по 80 кг соответственно, имеем уравнение

60x + 80y = 1000,

или уравнение

3x + 4y = 50

в целых неотрицательных числах. Одно целочисленное решение этого уравнения нетрудно угадать, воспользовавшись равенством


Учитывая формулы общего решения (см. задачу 6.8), получаем все целочисленные решения этого уравнения:

x = -50 +4k, y = 50 - 3k.

Теперь для того, чтобы найти все натуральные решения, наложим ограничения


из которых выведем оценки


Таким образом, полагая последовательно k = 13, 14, 15, 16, найдем все неотрицательные решения:


Наименьшее количество мешков x + y = 13 достигается при первом из найденных решений.

6.10. Задача сводится к решению уравнения

0,7x + 0,9y = 20,5

в целых неотрицательных числах (x и y - количество банок по 0,7 и 0,9 л соответственно). Преобразуем уравнение к виду

7x + 9y = 205,

а затем, делая последовательные замены переменных в левой части, получим равенства


где x + y = u, y + 3u = v. Из этих равенств имеем


Подставляя u = 88, 89, 90, 91, получаем четыре решения:


Наименьшая сумма x + y = 23 достигается при последнем решении, которое, следовательно, требует наименьшего

количества банок.

6.11. Из равенства, сформулированного в п. б) задачи 5.12, при k = n получаем


где - последняя подходящая дробь к цепной дроби, в которую раскладывается дробь a/b

. Так как дроби - несократимы (см. задачу 5.9), то Pn = а, Qn = b и


Умножая обе части последнего равенства на (-1)n, имеем


т. е. пара чисел является решением уравнения ax + by = с.

6.12. Обозначая через x и y количества контейнеров по 170 и 190 кг соответственно, получаем после сокращения на 10 уравнение

17x + 19y = 300

в целых неотрицательных числах. Для нахождения частного решения воспользуемся методом задачи 6.11, разложив дробь 17/19 в цепную дробь


(число n получилось равным 4) и свернув предпоследнюю подходящую к ней дробь в обыкновенную


Итак, частное решение расходного уравнения имеет вид


а общее задается формулой


откуда получаем условия на параметр k


т. е. k = 142, x = 2, y = 14.

Перейти на страницу:

Похожие книги