11.8.
Из точки А пересечения железной дороги с каналом через данный населенный пункт В проведем луч. Опустим из какой-либо точки О железной дороги перпендикуляр ОС к каналу и найдем на луче А В точки, удаленные от точки О на расстояние ОС. Таких точек окажется две - это будут точки D и У, лежащие на окружности с центром О и радиусом ОС. Для определенности будем считать, что DA>EA (рис. 25). Проведем отрезки BF и BG, соединяющие точку В с точками F и G на железной дороге и параллельные отрезкам DO и ЕО соответственно. Тогда из подобия соответствующих треугольников будет следовать, что точки F и G равноудалены от канала и от точки В, т. е. они укажут искомые места расположения полустанка. Никаких других возможностей для расположения полустанка нет, поскольку для любой искомой точки существует преобразование гомотетии относительно точки A, переводящее искомую точку в точку О, а точку В в точку луча АВ, удаленную от точки О на расстояние ОС, т. е. в одну из точек D или Е.Рис. 25
Минимальное расстояние до полустанка достигается в точке F, для которой имеем
ибо DO = EO и DA>EA.
11.9.
Найдем точку О, в которой должен находиться центр пруда. Поскольку точка О равноудалена от двух данных магистралей, то она лежит на биссектрисе угла между ними. Таким образом, задача сводится к нахождению на данной прямой l - биссектрисе - точки О, равноудаленной от данной точки А - населенного пункта - и от другой данной прямой - той из магистралей, которая образует с прямой l угол, содержащий точку А (этот угол будет обязательно острым, так как он равен половине угла между магистралями). Такая ситуация разобрана в решении задачи 11.8.11.10.
Найдем точку О, в которой должен находиться центр пруда, Поскольку точка О равноудалена от двух данных населенных пунктов A и В, то она лежит на серединном перпендикуляре к отрезку АВ (рис. 26). Таким образом, задача сводится к нахождению на данной прямой h (перпендикуляре) точки О, равноудаленной от точки A или точки В и от другой данной прямой l (магистрали). Если прямые h и l не параллельны и не перпендикулярны, то они в пересечении образуют острый угол, внутри которого расположена одна из точек A и В (ведь обе эти точки лежат по одну сторону от прямой l). Способ нахождения точки О в этом случае указан в решении задачи 11.8. Если прямые h и l перпендикулярны, то точка О должна быть равноудалена от точки их пересечения и от точки A, и этот случай также был разобран в решении задачи 11.1. Наконец, если прямые h и l параллельны, то точка О должна быть удалена от точки A на расстояние, равное расстоянию d между прямыми h и L Поэтому искомая точка лежит на пересечении прямой h и окружности с центром A и радиусом d (таких точек пересечения будет две, поскольку расстояние от точки A до прямой к меньше d - ведь одна из точек A или В расположена между прямыми h и l).Рис. 26
§ 12. Кратчайшие системы дорог
Важными с практической точки зрения являются задачи, в которых требуется провести кратчайшую дорогу, удовлетворяющую заданным условиям, или выбрать кратчайший маршрут, использующий уже имеющиеся дороги, или, наконец, выбрать место для строительства какого-либо объекта так, чтобы впоследствии транспортные расходы оказались минимальными. Подобные задачи возникают в экономике на каждом шагу и от правильности их решения зависит очень многое.
Как и в §11, будем считать все населенные пункты, дома, заводы и т. п. точками, а дороги, каналы и т. п. прямыми линиями. Старайтесь находить такие решения, которые требуют поменьше средств для их реализации.
12.1. Маршрут катера
Внутри водоема правильной круглой формы расположен маленький островок. Укажите кратчайший прямой маршрут катера, соединяющий какие-нибудь точки берега и имеющий промежуточный причал у островка.12.2. Место для завода
Четыре населенных пункта расположены в вершинах выпуклого четырехугольника. В каком месте следует построить завод, чтобы сумма расстояний от него до всех четырех данных пунктов была наименьшей?12.3. Газетный киоск
Вдоль прямой улицы по одну сторону от нее стоят несколько домов. В каком месте улицы нужно установить газетный киоск, чтобы сумма расстояний от него до всех домов была наименьшей?12.4. Где построить школу?
В одном населенном пункте живет больше детей, чем в другом. В каком месте следует построить школу, чтобы общие затраты на перевозку детей были минимальны, если эти затраты пропорциональны как количеству детей, так и расстоянию от населенного пункта до школы?12.5. Строительство водопровода
Для снабжения водой двух населенных пунктов, расположенных по одну сторону от канала, требуется на берегу канала построить водонапорную башню. В каком месте следует построить башню, чтобы суммарная длина труб от нее до каждого из пунктов (по прямой) была наименьшей?