17.8.
Примерно по середине листа проведем две перпендикулярные прямые (линии сгиба) EF и GH, параллельные сторонам будущего прямоугольника ABCD и пересекающиеся в точке О (рис. 93). Приложим сверху край EF листа, перегнутого предварительно по прямой EF, к той части исходного листа, которая содержит точку G, и проследим, чтобы точка О оказалась прижатой к лучу OG. Тогда, перегнув вдоль листа нижнюю часть листа, мы получим прямую AD. Аналогично с другой стороны от прямой EF получаем прямую ВС. Приложив также край GH листа, перегнутого по прямой GH, к той части исходного листа, которая содержит точку Е, и проследив, чтобы точка О оказалась прижатой к лучу ОЕ и чтобы линия GH пересекла обе построенные ранее линии AD и СВУ мы получим сторону АВ прямоугольника. Аналогично получаем противоположную его сторону CD. Для доказательства того, что построенный четырехугольник действительно является прямоугольником, достаточно проверить, что прямые АВ и CD параллельны прямой EF, а прямые AD и ВС - прямой GH.Рис. 93
17.9.
Перегнем прямоугольный лист бумаги по биссектрисе одного из его углов BAD, т. е. так, чтобы сторона АВ прямоугольника ABCD пошла по соседней с ней стороне AD, а линия сгиба пересекла какую-то третью сторону в точке Е (рис. 94). Пусть меньшая сторона АВ оказалась наложенной сверху на большую сторону AD. Тогда, перегнув нижнюю часть листа вдоль линии BE, мы получим квадрат ABEF. Действительно, в четырехугольнике ABEF выполнены равенстваРис. 94
17.10.
Перегнем данный прямоугольник ABCD по серединному перпендикуляру EF, скажем, к меньшей стороне AD (рис. 95). Не разворачивая лист, перегнем его еще раз по любой линии, пересекающей отрезки АЕ и EF. Тогда после разворачивания последняя линия сгиба, которая пройдет как по прямоугольнику AEFB, так и по прямоугольнику DEFC, вместе с прямой AD образует равнобедренный треугольник (в силу его симметрии относительно прямой EF).Рис. 95
Для построения равностороннего треугольника перегнем прямоугольник ABCD по линии, проходящей через вершину А, так, чтобы точка D совместилась с какой-нибудь точкой G отрезка EF. Тогда треугольник ADG будет равносторонним, поскольку в силу построения имеем
17.11.
Проведем серединный перпендикуляр к стороне AD квадрата ABCD, а затем перегнем квадрат по линии, проходящей через точку А, так, чтобы точка В совместилась с какой-нибудь точкой G проведенного перпендикуляра (рис. 96). Тогда линия сгиба пересечет сторону ВС в точке Е, а если перегнуть квадрат по диагонали АС, то точка Е совместится с точкой F. Докажем, что треугольник AEF равносторонний. Действительно, так как треугольник ADG равносторонний (ибоРис. 96
17.12.
Проведя две биссектрисы равностороннего треугольника ABC (см. задачу 17.7), мы найдем его центр О. Загнем углы треугольника так, чтобы их вершины совместились с точкой О (рис. 97). Тогда полученная фигура и будет представлять собой правильный шестиугольник. В самом деле, все шесть треугольников, из которых составлен шестиугольник, являются равносторонними (их равнобедренность вытекает из симметрии всей фигуры относительно биссектрис исходного треугольника ABC, а равенство каждого из углов по 60° следует из равенства 60° каждого из углов при вершинах А, В, С и равенства друг другу трех оставшихся углов с вершинами в точке О).Рис. 97
17.13.
Проведем диагонали квадрата ABCD, серединный перпендикуляр к стороне AD и биссектрисы углов между диагоналями и этим перпендикуляром. Загнем углы квадрата так, чтобы линии сгиба проходили через точки пересечения биссектрис со сторонами квадрата, а вершины угловРис. 98
17.14.
Проведем высоту AD треугольника ABC, опущенную из вершины А его наибольшего угла. Теперь загнем все три угла треугольника так, чтобы их вершины совместились с точкой D (рис. 99). Тогда углы при вершинах треугольника без наложений друг на друга составят в сумме развернутый угол с вершиной D, равный 180°.Рис. 99