Читаем Пути развития химии. Том 2. От начала промышленной революции до первой четверти XX века полностью

Следующий шаг в изучении структуры атома был сделан Максом Лауэ в 1912 г. Он облучал кристаллические вещества рентгеновскими лучами и установил, что кристаллы состоят из атомов, расположенных в определенном геометрическом порядке (структуре). Они рассеивают (дифрагируют) рентгеновские лучи, и по получающейся при этом дифракционной картине можно было рассчитать длину волны рентгеновского излучения. По сути, рентгеновские лучи похожи на световые лучи, но с очень малой длиной волны.

Заряд ядра и порядковый номер

В 1906 г. Чарлз Гловер Баркла установил, что различные элементы испускают определенные серии характеристических рентгеновских лучей. Уильям Генри Брэгг и его сын Уильям Лоренс Брэгг смогли объяснить это в 1912 г. дифракцией рентгеновских лучей кристаллическими веществами. В 1913 г. Генри Мозли, используя в качестве антикатодов в рентгеновских трубках различные элементы, получил по методу Брэггов эмиссионные спектры этих элементов. При этом он обнаружил, что длины волны таких рентгеновских лучей уменьшаются с увеличением атомной массы излучающего элемента. Связь между увеличением атомной массы элементов и уменьшением длины волны зависела от величины положительного заряда ядра атома. Мозли составил диаграмму и показал, что, зная длину волны рентгеновских лучей, можно рассчитать электрический заряд ядра элемента. Например, заряд ядра равен для водорода +1, гелия +2, лития +3, урана +92. Величина заряда ядра соответствует порядковому номеру, понятие о котором ввел Иоганнес Роберт Ридберг, чтобы исправить выявленное нарушение закономерности в расположении элементов в периодической системе. Некоторые элементы с большей атомной массой размещены в соответствии с зарядом их ядра в системе перед элементами с меньшей массой (Аr — перед К, Со — перед Ni, Те — перед I). Именно в этом заключается физический смысл порядкового номера элемента.

Эти новые данные привели в XX в. к изменению представлений об элементе: элементом стали называть вещество, все атомы которого имеют один и тот же порядковый номер. Однако это определение по-прежнему включало в себя представление о том, что элемент состоит из атомов одного вида и что он не подвергается дальнейшему разложению при химическом воздействии. Уже к 1913-1914 гг., за исключением шести порядковых номеров -43, 61, 72, 75, 85, 87,- все места в периодической системе были заняты открытыми элементами. К 1945 г. эти пустоты в периодической системе тоже были заполнены.

Кульминационным моментом в исследовании электронов и атомного ядра явилось создание в 1913 г. модели атома Бора и Резерфорда.

Нильс Бор (1885-1962)

Нильс Бор (родился в Копенгагене в 1885 г.) был учеником Резерфорда и в своих работах широко использовал предложенную Резерфордом модель атома, а также разработанную Максом Планком в 1900 г. квантовую теорию испускания света и развитые Эйнштейном теории квантовой структуры светового излучения и фотоэффекта.

Планк и Эйнштейн пришли к выводу, что вещество может испускать или поглощать свет (т.е. энергию) не в любых количествах, а только порциями — квантами (энергия которых пропорциональна частоте излучения hv). Когда, например, электрон атома водорода, находящийся на большой орбите, испускает квант света, то в результате этого он переходит на орбиту с меньшим радиусом, которая соответствует состоянию атома с меньшим запасом энергии.

Отсюда Бор сделал вывод, что атом водорода может существовать только в совершенно определенных "стационарных" состояниях. Основное, или нормальное, состояние атома датский физик определял как состояние, обладающее минимальным запасом энергии и соответствующее наиболее стабильному состоянию атома. Состояние с более высокой энергией Бор называл возбужденным. При переходе атома из более высокого (с энергией Е") в более низкое (E') энергетическое состояние энергия испускаемого излучения (кванта света) отвечает разности Е"-Е'

. Следовательно, частота излучения определяется уравнением hv = Е"-Е'. Это уравнение относится и к поглощению света атомом, а также к поглощению или испусканию света молекулой.

Электронные оболочки

В начале XX в. представления о строении электронных оболочек основывались на результатах исследования свойств света, излучаемого атомом при его возбуждении (электрическом или за счет повышения температуры). Излучаемый атомом свет состоит из узких линий определенной частоты, совокупность которых составляет линейчатый спектр атома.

После создания Бором модели атома понадобилось еще 12 лет, чтобы объяснить электронное строение атома (1925 г.). Получить представление о свойствах электронов было совершенно необходимо для понимания характера связи атомов и строения молекулы в целом.

Перейти на страницу:

Похожие книги

Сумма биотехнологии. Руководство по борьбе с мифами о генетической модификации растений, животных и людей
Сумма биотехнологии. Руководство по борьбе с мифами о генетической модификации растений, животных и людей

«Сумма биотехнологии» Александра Панчина — это увлекательный научно-популярный рассказ о генетически модифицированных организмах (ГМО), их безопасности и методах создания, а также о других биотехнологиях, которые оказались в центре общественных дискуссий. Из книги вы узнаете все самое интересное о чтении молекул ДНК, возможности клонирования человека, создании химер, искусственном оплодотворении и генетической диагностике, о современных методах лечения наследственных заболеваний с помощью генной терапии, о перспективах продления человеческой жизни и победы над старением. В то же время в книге подробно разобраны популярные в обществе мифы, связанные с внедрением биотехнологий в практику, и причины возникновения ложных опасений.

Александр Панчин , Александр Юрьевич Панчин

Научная литература / Химия / Биология / Прочая научная литература / Образование и наука