Атомистическая теория Дальтона получила в начале XX в. такие важные подтверждения, которые привели к коренному изменению представлений о строении атомов. В XIX в. были сделаны два важнейших открытия, которые, как тогда казалось, поставили под сомнение правомерность атомистических представлений. Одно из этих открытий было следствием электрохимических работ Фарадея, а второе — результатом исследований необычного излучения, испускаемого некоторыми веществами. Это излучение, как показали Анри Беккерель, а также супруги Пьер и Мария Кюри, оказалось радиоактивностью. (Дальнейшую судьбу электрохимических воззрений Фарадея рассмотрим ниже.)
Фарадей пытался выяснить, является ли вакуум проводником электрического тока. Однако он не смог это установить, поскольку не добился достаточно хорошего вакуумирования. Это удалось Юлиусу Плюккеру, у которого было соответствующее оборудование — стеклянные сосуды, изобретенные в 1855 г. Генрихом Гейслером. Плюккер впаял в сосуд два электрода и создал между ними разность потенциалов. Ему удалось зарегистрировать прохождение тока между электродами. К тому же Плюккер наблюдал возникающее при этом свечение, яркость которого зависела от величины вакуума. При очень хорошем вакууме, например, наблюдалось очень яркое свечение, а вблизи анода стекло приобретало зеленоватый оттенок.
В 1875 г. Уильям Крукс изготовил трубки (названные затем его именем) с еще более глубоким вакуумом. Используя их, он смог обнаружить, что электрический ток направлен от катода к аноду. Вблизи анода ток попадал на стекло и вызывал его свечение. Чтобы показать это отчетливее, Крукс впаял в трубку металлическую пластину, которая отбрасывала тень на стекло в противоположном от катода конце трубки. Однако в то время трудно было понять, что представляет собой этот ток от катода к аноду, и лишь Эуген Гольдштейн первым произнес термин "катодные лучи". Он высказал предположение, что речь идет о каком-то виде света, так как катодные лучи распространялись, подобно свету, прямолинейно, не испытывая влияния силы тяжести. Одни физики присоединились к этому предположению, другие хотели видеть в катодных лучах частицы, которые могут так легко и быстро перемещаться потому, что они или вообще не испытывают действия силы тяжести, или же это действие не проявляется в сколько-нибудь заметной степени. Плюккер и Крукс обнаружили отклонение катодных лучей в магнитном поле. Это доказывало, что лучи представляют собой поток частиц, ибо волны должны были в значительно меньшей степени подвергаться влиянию магнитного поля.
Джозеф Джон Томсон (1856-1940)
Решительным защитником корпускулярной гипотезы был Джордж Джонстон Стони[110]
. В 1891 г. он дал дискретной частице название "электрон", рассматривая ее как элементарную единицу электрического заряда.В 1895 г. Жан Перрен показал, что катодные лучи состоят из отрицательно заряженных частичек; на пути катодных лучей он ставил экран со щелью и всю установку помещал в магнитное поле, при этом катодные лучи отклонялись к положительному полюсу.
Джозеф Джон Томсон в 1897 г. определил скорость катодных лучей, а из величины их отклонения в магнитном поле нашел отношение заряда к массе частиц. Значение массы оказалось примерно в 1000 раз меньше массы самого легкого атома — водорода[111]
. На основе такой огромной разницы Томсон сделал вывод, что речь идет о неизвестной ранее элементарной частице[112]. Точную массу электрона, равную 1/1837 массы атома водорода, установил в 1909-1913 гг. Роберт Эндрус Милликен.Открытие электрона предшествовало открытию протона- положительно заряженной частицы. Еще в 1886 г. Гольдштейн наблюдал, что при испускании катодных лучей на сам катод попадают лучи иной природы, которым ученый приписал поэтому противоположный электронам[113]
положительный заряд. В 1907 г. Дж. Дж. Томсон назвал их положительно заряженными лучами. Дальнейшее исследование показало, что частицы, составляющие эти лучи, отличаются от электронов не только знаком заряда, но также и значительно большей массой. Масса "протонов", как назвал их в 1920 г. Э. Резерфорд, была примерно равна массе атома водорода, т. е. в 1837 раз больше массы электрона.Роберт Эндрус Милликен (1868-1953)