Читаем Пути развития химии. Том 2. От начала промышленной революции до первой четверти XX века полностью

В 1850 г. Клаузиус сформулировал второй закон термодинамики, показывающий направление изменения энергии в замкнутой системе, а в 1865 г. ввел понятие энтропии: энтропия замкнутой системы при необратимом процессе всегда возрастает, а при обратимом процессе остается постоянной.

В 1906 г. Нернст сформулировал третье начало термодинамики; он обнаружил, что по мере приближения к температуре абсолютного нуля тепловой эффект и движущая сила (максимальная работа) химических реакций все более приближаются друг к другу, а при температуре абсолютного нуля совпадают (в формулировке, данной в 1911г. М. Планком, тепловой закон гласит: при неограниченном понижении температуры энтропия любой конденсированной химической системы неограниченно стремится к нулевому значению). Благодаря тепловому закону стал впервые возможным точный расчет химических равновесий. Кроме того получили объяснение данные, которые, казалось, ставили под сомнение закон Дюлонга — Пти, а именно то, что атомные теплоемкости элементов уменьшаются при понижении температуры и, таким образом, не могут быть постоянными величинами.

Вальтер Нернст (1864-1941)

Вальтер Нернст, ученик Оствальда, в 1920 г. стал лауреатом Нобелевской премии по химии. Его имя приобрело широкую известность после выхода в свет в 1893 г. монографии "Теоретическая химия с точки зрения закона Авогадро и термодинамики"[107][239]. Главная заслуга Нернста заключается в создании теоретических построений и математического аппарата физической химии. Исходя из данного им определения удельного давления раствора и растворимости металлов, Нернст создал теорию электродвижущих сил.

Развитие кинетической теории газов

Еще в XVIII в. Д. Бернулли объяснял свойства газов на основе теплового движения молекул. Согласно положениям кинетической теории газов, молекулы газа находятся в хаотическом движении. Поэтому в любой данный момент времени все молекулы имеют неодинаковую скорость и различную кинетическую энергию. Средняя кинетическая энергия оказывается при одних и тех же температурах для всех газов одинаковой. С повышением температуры она увеличивается пропорционально абсолютной температуре.

Кинетическая теория газов объясняла, почему наблюдается закономерность, установленная Р. Бойлем и Э. Мариоттом (закон Бойля-Мариотта): при столкновении молекулы газа оказывают давление на стенки сосуда. Если объем газа уменьшается, например, наполовину, то число молекул в единице объема удваивается, при этом вдвое возрастает и число соударений молекул и соответственно давление (при постоянной температуре).

В свете кинетической теории газов нашел объяснение и закон Авогадро, так как при одной и той же температуре средняя кинетическая энергия молекул всех газов одинакова. Благодаря работам Рудольфа Клаузиуса (1850 г.) кинетическая теория газов получила всеобщее признание. Для развития этой теории большое значение имели работы Дж. Джоуля, А. Крёнига, Дж. Максвелла и Л. Больцмана.

Коллоидная химия

Зарождение коллоидной химии произошло в 60-е годы XIX в., когда Томас Грехэм, использовав метод диализа, произвел разделение веществ на коллоиды и кристаллоиды. Его исследования продолжили Альфред Лоттермозер и Рафаэль Лизеганг и особенно Ричард Зигмонди, Вольфганг Оствальд и Генрих Бехольд.

Герман Штаудингер, открывший в 1905 г. кетены, в 1921 г. доказал, что каучук и другие коллоидные вещества состоят из тысяч атомов, соединенных друг с другом ковалентными связями. Его работы (1926 г.) заложили основы макромолекулярной химии[108]

. Штаудингер показал, что макромолекулы, подобно радикалам, могут переходить без изменения из одного соединения в другое. Макромолекулы представляют собой коллоидные частицы, которые ранее считались состоящими только из мицелл. Макромолекулярная химия с 30-х годов превратилась в самостоятельное научное направление. На основе положений макромолекулярной химии Удается объяснять природу органических соединений и разрабатывать методы получения синтетических веществ. Для развития макромолекулярной химии большое значение имели публикации статей в этой области знания в специально созданных научных журналах.

Модель строения атома Бора-Резерфорда[109]

Электрон и протон

Перейти на страницу:

Похожие книги

Сумма биотехнологии. Руководство по борьбе с мифами о генетической модификации растений, животных и людей
Сумма биотехнологии. Руководство по борьбе с мифами о генетической модификации растений, животных и людей

«Сумма биотехнологии» Александра Панчина — это увлекательный научно-популярный рассказ о генетически модифицированных организмах (ГМО), их безопасности и методах создания, а также о других биотехнологиях, которые оказались в центре общественных дискуссий. Из книги вы узнаете все самое интересное о чтении молекул ДНК, возможности клонирования человека, создании химер, искусственном оплодотворении и генетической диагностике, о современных методах лечения наследственных заболеваний с помощью генной терапии, о перспективах продления человеческой жизни и победы над старением. В то же время в книге подробно разобраны популярные в обществе мифы, связанные с внедрением биотехнологий в практику, и причины возникновения ложных опасений.

Александр Панчин , Александр Юрьевич Панчин

Научная литература / Химия / Биология / Прочая научная литература / Образование и наука