Читаем Пути развития химии. Том 2. От начала промышленной революции до первой четверти XX века полностью

Лаборатория Й. Я. Берцелиуса была еще похожа на кухню; лаборатория Либиха была вначале тоже так примитивна, что он мог в ней работать только в теплое время года, а все приборы и вещества должен был изготавливать сам. Я. Фольгард так описывал химическую лабораторию того времени: "Посредине, на плите, стоят несколько небольших печек с раскаленным углем; газа в то время еще не было, а пламени спиртовок хватало только для обогрева маленьких приборов. На одном столе в большой фарфоровой чашке выпаривается какаягто жидкость, на другом в огромной стеклянной реторте перегоняется кислота. Вдруг реторта лопается — кислота выливается на раскаленный уголь и мгновенно все помещение наполняется густым дымом и едким паром. Вентиляции нет, быстро распахиваются двери и окна, а учитель и его ученики выбегают на воздух и находятся там до тех пор, пока не рассеется дым" [97, с. 56].

Однако вскоре положение изменилось, и многие созданные в конце XIX в. лаборатории уже отвечали всем требованиям проведения экспериментальных работ (вплоть до середины XX в.).

Прежде всего химики усовершенствовали освещение и вентиляцию. Были сконструированы вытяжные шкафы; до этого длительные работы с плохо пахнущими или "едкими" веществами приходилось проводить не в помещении, а на открытом воздухе. Газовое освещение, появившееся в последней трети XIX в., облегчило условия работы, так же как и создание водопровода (хотя в некоторых лабораториях даже во второй половине XIX в. приходилось вручную качать воду из колодцев).

Электричество стало использоваться для освещения только в конце "классического этапа" развития химии. В Англии Г. Дэви и в России В. В. Петров[194], используя большие батареи Вольта и угольные электроды, получили электрическую дугу. После открытия Фарадеем в 1831 г. явления электромагнитной индукции были созданы достаточно мощные генераторы. После этого в некоторых местах (на маяках, на улицах и заводах) Европы и Америки засветились дуговые лампы.

Однако освещение дуговыми лампами требовало больших затрат, а время их горения было очень кратким. Только создание в восьмидесятых годах XIX в. Томасом Эдисоном[195] ламп накаливания и изобретение в 1906 г. танталовой лампы привели постепенно к замене старых, основанных на горении способов освещения [98]. Керосиновые лампы и газовые фонари оказались последними этапами этой стадии развития освещения. И тем не менее свет свечи до сих пор сохраняет очарование. М. Фарадей в своих прекрасных, крайне интересных для чтения даже сейчас лекциях, которые вышли на немецком языке под названием "История свечи", писал: "Сравните блеск золота и серебра и еще большую яркость драгоценных камней — рубина и алмаза,- но ни то, ни другое не сравнится с сиянием и красотой пламени. И действительно, какой алмаз может светить как пламя? Ведь вечером и ночью алмаз обязан своим сверканием именно тому пламени, которое его освещает. Пламя светит в темноте, а блеск, заключенный в алмазе,- ничто, пока его не осветит пламя, и тогда алмаз снова засверкает. Только свеча светит сама по себе и сама для себя или для тех, кто ее изготовил" [99, пер. Драгуновой, с. 23-24].

С появлением в лабораториях более совершенного оборудования быстро возросли и расходы на их постройку и содержание. Так, создание лаборатории института Кольбе в 1866- 1868 гг. (по масштабам того времени — крупнейшей) стоило 240 000 марок. В лаборатории было свыше 132 рабочих мест. Пристройка для института, возглавляемого Т. Курцисом, при Гейдельбергском университете в 1892 г. обошлась в 503 000 марок. Строительство корпуса химического института, руководимого Эмилем Фишером, при Берлинском университете, в 1900 г. стоило уже 1 670 000 марок. Помещение этого института было рассчитано на 250 стажеров и 50 сотрудников. На строительство институтов неорганической, органической, технической химии и электрохимии при Высшей технической школе в Ганновере в 1911г. было израсходовано 1537 437 марок.

Химическая лаборатория 1890-х годов

Перейти на страницу:

Похожие книги

Сумма биотехнологии. Руководство по борьбе с мифами о генетической модификации растений, животных и людей
Сумма биотехнологии. Руководство по борьбе с мифами о генетической модификации растений, животных и людей

«Сумма биотехнологии» Александра Панчина — это увлекательный научно-популярный рассказ о генетически модифицированных организмах (ГМО), их безопасности и методах создания, а также о других биотехнологиях, которые оказались в центре общественных дискуссий. Из книги вы узнаете все самое интересное о чтении молекул ДНК, возможности клонирования человека, создании химер, искусственном оплодотворении и генетической диагностике, о современных методах лечения наследственных заболеваний с помощью генной терапии, о перспективах продления человеческой жизни и победы над старением. В то же время в книге подробно разобраны популярные в обществе мифы, связанные с внедрением биотехнологий в практику, и причины возникновения ложных опасений.

Александр Панчин , Александр Юрьевич Панчин

Научная литература / Химия / Биология / Прочая научная литература / Образование и наука