Последним нюансом, касающимся хаоса, является странный вид порядка, скрывающегося за этим хаосом. Хаос не есть нечто бесформенное (вопреки, как было сказано выше, обыденному смыслу этого слова). Скрытый смысл структуры, лежащей в основе хаоса, проявляется в работе действующего макета водяного колеса с его бесконечной последовательностью вращений то в ту, то в другую сторону; несмотря на то что эта последовательность никогда не повторяется в деталях, в целом ее характер остается одним и тем же. В хаосе заложена некая сущность – качество, которое никогда не изменяется.
Когда в начале 1960-х годов Лоренц анализировал свою «маленькую модель», ему удалось силой собственного воображения уловить сущность подлинного хаоса. Он принимал вид некой геометрической фигуры, чего-то необычного, не вполне поверхности, но и не твердого тела, имеющего четкие очертания. Задолго до появления современной компьютерной графики такую фигуру было не так-то просто воспроизвести и визуализировать. Даже после того как Лоренц нарисовал ее в собственном воображении, ему было очень трудно подобрать слова, чтобы передать ее необычную геометрию. Он описывал ее как «бесконечное сочетание поверхностей». В наши дни это получило название «странного аттрактора»[191]
[192].Точно так же как окружность является формой периодичности, странный аттрактор является формой хаоса. Он пребывает в неком абстрактном математическом пространстве, называемом пространством состояний, координатные оси которого представляют все переменные в некой физической системе. Уравнения Лоренца содержали три переменные, поэтому его пространство состояний является трехмерным. В случае водяного колеса – точного механического аналога уравнений Лоренца – одна из переменных говорит нам о том, как быстро и в каком направлении вращается это колесо, тогда как две другие переменные характерихуют два конкретных аспекта того, как распределяется вода по периметру колеса. Значения этих переменных в тот или иной момент определяют конкретную точку в пространстве состояний, соответствующую «фотографии» данной системы в этот момент времени.
В следующий момент состояние системы изменится в результате поворота колеса, а также вытекания и перераспределения воды. Увлекаемая своей собственной динамикой, система действует, переходя из состояния в состояние. Подобно схемам в уроках танцев Артура Мюррея, уравнения Лоренца – это правила, описывающие каждый ваш следующий шаг. Они определяют бесконечно малые стрелки в каждой точке пространства состояний. В какой бы точке ни оказывалось состояние системы, оно должно следовать за стрелкой в данной точке; эта стрелка сразу же переводит систему в следующую точку, где этот процесс повторяется, и т. д. Время идет, и значения переменных изменяются, точка перемещается в пространстве состояний, прочерчивая непрерывный путь, называемый траекторией, и летит, подобно комете в вымышленном мире, который существует лишь в воображении математика. Прелесть этой идеи заключается в том, что она трансформирует динамику в геометрию. Хаотическое движение становится некой картиной – чем-то таким, что мы можем увидеть, статическим образом, который мы можем рассматривать и изучать.
На что же похож хаос? Упомянутая нами траектория бесконечно долго бороздит просторы пространства состояний. Она никогда не завершается и не пересекает сама себя, поскольку хаос никогда не повторяется. Лоренцу удалось доказать, что его траектория никогда не выходит за пределы определенной большой сферы, поэтому она никогда не может уйти в бесконечность. Замкнутая внутри этой сферы, приговоренная бесконечно долго блуждать внутри нее, ни разу не пересекаясь сама с собой, эта траектория должна следовать очень сложным путем. Возникает соблазн представить ее в виде клубка, намотанного из бесконечно длинной нити и лишенного какой-либо структуры.
Но примитивная компьютерная графика, отображающая уравнения Лоренца, показала, что эта траектория подчинена строгой логике и замкнута лишь в крошечной части доступного ей пространства. Создается впечатление, что она натянута на некую поверхность – микроскопически тонкую мембрану, форма которой, по иронии судьбы, похожа на пару крыльев бабочки. Траектория «наматывается» вокруг одного из таких крыльев, удаляясь по спирали от центра. Затем, приблизившись к краю крыла, она устремляется к другому крылу и начинает вращение по спирали вокруг этого крыла. Переходя то к одному крылу, то к другому, траектория совершает вокруг каждого крыла непредсказуемое количество витков. Это очень похоже на то, как водяное колесо совершает непредсказуемое количество поворотов то в одном, то в другом направлении.