24.13.
Известно, что arcsin x + arccos x = /2 . Поэтому данную функцию удобно преобразовать так, чтобы воспользоваться этим соотношением.24.14.
Воспользоваться преобразованием нормирования:после чего коэффициенты при sin и cos можно объявить косинусом и синусом общего аргумента , т. е.
Функция у достигает своего наименьшего значения
когда sin ( + ) = -1, и наибольшего значения
при sin ( + ) = 1. (!)
24.15.
Систему естественно привести к видуСвободные члены равны, соответственно, 5^2, 12^2 и 5 · 12. Удобно каждое из соотношений разделить на его свободный член.
Вторые указания
K главе 1
1.1.
Из треугольника AO1D определить АO1; если известен радиус окружности O1 (см. рис. I.1.1 на с. 114).1.2.
Зная AB, можно найти AD и радиус ВО1 описанной окружности (рис. II.1.2[15]). Нужно лишь заметить, что угол ABD равен /2 - , а ВE = АB/2.1.3.
Возможны два случая взаимного расположения треугольника и окружности. Либо окружность будет вписана в треугольник так, что каждая точка касания делит соответствующую сторону пополам, либо одна вершина треугольника окажется внутри окружности, а две другие — вне.Найдите решение, не зависящее от взаимного расположения окружности и треугольника. Для этого достаточно рассмотреть треугольник, который получится, если соединить середины сторон данного треугольника.
1.4.
Чтобы найти отношение площадей треугольников А1В1С и АВС, нужно применить теорему об отношении площадей треугольников, имеющих равный угол.В обозначениях, введенных на рис. II.1.4. имеем
С помощью теоремы о биссектрисе внутреннего угла треугольника остается выразить а
1, a2, b1, b2, c1, с2 через а, b и с.1.5.
Если центр вписанной в треугольник окружности обозначить через О, то площадь треугольника АВС можно будет вычислить как сумму площадей треугольников АОВ, ВОС и СОА. При этом каждая из сторон АО, ВО и СО может быть выражена через радиус r вписанной окружности. Площадь треугольника А1В1С1 тоже разбивается на три площади: А1ОВ1, В1ОС1 и С1ОА1. Остается углы А1ОВ1, В1ОС1 и С1ОА1 выразить через углы треугольника АВС.1.6.
Из данного соотношения между площадями треугольников АDС и АВD, имеющих общую сторону АD и одинаковые углы при вершине А (поскольку АD — биссектриса треугольника АВС), можно найти отношение сторон AC : AB. Далее применить теорему синусов.1.7.
Площадь треугольника САD (D — точка пересечения биссектрисы внешнего угла А треугольника АВС с продолжением стороны СВ) можно вычислить двумя способами, используя лишь элементы, участвующие в задаче.1.8.
Сумма двух сторон треугольника, не лежащих против угла А, участвует в выражении площади через полупериметр и радиус вписанной окружности и в выражении через биссектрису и синус половинного угла. Из этих двух выражений сумму b + с нужно исключить.1.9.
Отношение отрезков АО и ОМ дано. Эти отрезки можно рассматривать как отрезки, на которые сторона AM треугольника АВМ делится биссектрисой ВО. В результате мы перейдем к отношению отрезков AB и ВМ, последний из которых легко выражается через стороны данного треугольника.Аналогично нужно поступить с отношением отрезков ВО
и ON.1.10.
Угол РМА равен углу QОА (рис. II.1.10). Чтобы найти МР, нужно рассмотреть сначала треугольник РМА, а затем треугольник ОАQ.1.11.
С помощью первого указания можно получить одно уравнение, связывающее углы данного треугольника. Ко второму уравнению нас приведет условие, в силу которого высота ВQ треугольника АВС (рис. II.1.11) в 6 раз больше высоты ОQ треугольника АОС. Достаточно выразить АQ из треугольников АВQ и АОQ, заметив при этом, что угол ОАQ является дополнительным для угла С.1.12.
После того как получено соотношениеh
/sin C + h/sin B = kиспользовать условие, согласно которому В
- С = /2, с тем, чтобы получить уравнение относительно одной тригонометрической функции неизвестного угла С. Для достижения этой цели можно, например, в написанное выше соотношение подставить В = /2 + С. После этого полученное соотношение удобно возвести в квадрат.1.13. Способ 1.
Через x, y и z можно выразить площадь треугольника:ха
+ yb + zc = 2S.Еще три соотношения, в которых участвуют x
, y и z, получим, если выразим каждый из отрезков АО, ВО и СО из двух прилегающих к нему треугольников.Способ 2.
Связать отрезки l, m и n удобно с помощью теоремы косинусов для каждого из трех треугольников АОВ, АОС и ВОС, сумма площадей которых равна площади треугольника АВС.1.14.
Остается использовать условие, что А - В = . С помощью формул преобразования произведения тригонометрических функций в сумму придем к тригонометрическому уравнению относительно A + B/2.1.15.
Площадь треугольника АВС, которую мы временно обозначим через S, равнаS
= 1/2 aha = 1/2 bhb.Кроме того, S
выражается через а, b, l и sin C/2 , если треугольник АВС разделить биссектрисой СD на два треугольника.