2.14.
Проводим через точку M окружность, концентрическую данной. На этой окружности строим хорду длины а, проходящую через точку M. Задача может иметь два или одно решение (а 2МО), а может и не иметь решения вовсе (а 2МО).2.15.
Так как дуга AmB фиксирована, то известен и вписанный угол АМВ. Обозначим его через . Если отрезок PQ (рис. P.2.15) перенести параллельно в отрезок В1В, то из точки P отрезок АВ1 будет виден под углом . Таким образом, строим отрезок В1В, равный а и параллельный CD; на отрезке АВ1 строим сегмент, вмещающий угол , где — угол, измеряемый дугой AmB данной окружности. Искомая точка P есть точка пересечения или касания дуги этого сегмента с прямой CD.Задача может иметь два решения (сегмент, опирающийся на АВ
1, пересекает хорду CD), одно решение (этот сегмент касается хорды) и может не иметь решений вовсе (точек пересечения нет).2.16.
Пусть отрезок FD делится точкой M пополам (рис. P.2.16). Отразим точку B от точки M. Получим точку E. Отрезки FD и ЕВ можно рассматривать как диагонали параллелограмма.Заметим также, что угол АСВ
известен, так как точки А и B зафиксированы на окружности; обозначим его через . Угол АFЕ равен - . Следовательно, точка F обладает еще и тем свойством, что из нее отрезок AE виден под данным углом - .Итак, строим точку E
, а на отрезке AE — сегмент, вмещающий угол - . На пересечении дуги этого сегмента с данной прямой получим точку F.Задача имеет единственное решение, если точки А
и B лежат по одну сторону от данной прямой, и не имеет решений в остальных случаях. 2.17.
Пусть прямая, проведенная через точки А и B, пересекает прямую PQ в точке С (рис. P.2.17), и пусть О — центр искомой окружности. Тогда СА · СВ = CD^2. Отрезки СА и СВ известны, отрезок CD — их среднее геометрическое и строится стандартным образом.Если точки А
и B лежат по одну сторону от PQ, то задача имеет два решения (отрезок CD можно отложить вправо и влево от точки С). Если AB и PQ параллельны, то задача имеет единственное решение, которое очевидно, но не может быть получено описанным способом. Когда точки А и P лежат по разные стороны PQ, задача не имеет решения.2.18.
Отрезки МВ и МА или их продолжения пересекают данную окружность в точках С и D (рис. P.2.18), которые являются основаниями высот треугольника АМВ, опущенных из его вершин А и B. Отрезок МР, проведенный через точку P пересечения AC и BD, будет искомым перпендикуляром.Задача имеет решение, если точка M
не лежит на прямой AB.2.19.
Предыдущая задача позволяет построить некоторый перпендикуляр к диаметру AB, пересекающий данную окружность в точках, которые мы обозначим буквами С и D (рис. P.2.19). Проведем прямую СМ; она пересечет диаметр AB (или его продолжение) в точке E. Проведем ED. B пересечении ED и данной окружности получим точку F; MF — искомый перпендикуляр.2.20.
Построим точку А1 симметричную точке А относительно прямой l (рис. P.2.20). Для любой точки С на прямой l (в силу неравенства треугольника) справедливо соотношение|AC
- BC| = |А1С - BC| = А1В.Величина |А
1С - BC| будет меняться в зависимости от положения точки С, и станет наибольшей, когда точка С займет положение С1 (на пересечении прямых А1B и l). Именно для этой точки треугольник СА1В вырождается в отрезок С1В, а неравенство треугольника превращается в равенство: |А1С - BC| = А1B. Из построения следует, что точка С единственная (если бы мы отражали от прямой l точку B, то пришли бы к той же точке С).2.21.
Две противоположные вершины искомого квадрата лежат, во-первых, на внешних полуокружностях, построенных на сторонах данного четырехугольника (рис. P.2.21), и, во-вторых, на диагонали квадрата, которая пересекает внутренние полуокружности в точках E и F, таких, что АF = FB = DE = EC = 45°.После проведенного анализа построение очевидно.
2.22.
Выберем на глаз отрезок длины 1. Построим прямоугольный треугольник с катетами 1 и 1. Гипотенуза его равна 2. Далее возьмем катеты 1 и 2. Получим гипотенузу 3. Если же катеты равны 3 и 2, то гипотенуза равна 7. На сторонах острого угла А (для удобства) отложим AB = 1, АВ1 = 7, AC = 7 (рис. P.2.22). Соединим B
и С, через В1 проведем прямую, параллельную BC. Она пересечет AC в точке С1. Из подобия треугольников ABC и АВ1С1 имеем AB : АВ1 = AC : АС1. Отсюда Однако это 7 выбранных нами единиц, а не реальный отрезок длины 7, данный в условии задачи. Отложим АС2 = 7. Это уже данный в условии отрезок. И проведем С2В2 || СВ. Отрезок АВ2 = 7.2.23.
Так как длина искомого отрезка есть а длина данного отрезка равна а
, то рассмотрим только такие значения а, что одновременноРешение этой системы есть два интервала: 0 а
1 и а 3.Пусть 0 а
1. Тогда удобнее записать длину искомого отрезка так:На одном луче угла отложим отрезки OA =
2 + а и OB = 3 + а, а на другом луче — отрезок ОС = 3 - а (рис. P.2.23, а). Соединим А и С, проведем BD || AC. Тогда